

JAIDEV EDUCATION SOCIETY'S J D COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Website: www.jdcoem.ac.inE-mail: info@jdcoem.ac.in An Autonomous Institute, with NAAC "A" Grade **Department of Electronics and Telecommunication Engineering** "Rectifying Ideas, Amplifying Knowledge" 2021-22 (Odd Sem)

VISION	MISSION
"To be a Department providing high quality & globally competent knowledge of concurrent	 To provide quality teaching learning process through well-developed educational environment
technologies in the field of Electronics and Telecommunication."	and dedicated faculties. To produce competent technocrats of high standards satisfying the needs of all stakeholders.

	i eaching rian					
Course: B. Te	ch in Electrical Engineering	Year/Semester : 3 rd Semester (2nd Year)				
Name of the T	Seacher : Mr. P. V. Ambade	Subject Code : EE3T005				
Subject	:Measurement & Instrumentation	Section :-				
Periods per W	Veek (each 60 min)	Lecture 3				
		Tutorial 1				
		Practical 1				

	Course Objective		Course Outcomes
1	Remembering the fundamental principles of electrical	1	Remember the different types of instruments used in
	instruments and measurements		electrical measurements.
2	Classification of various electrical measuring instruments	2	Understand the operating principles of various electrical
3	Make a use of operating principles of various electrical		measuring instruments.
	measuring instruments.	3	Apply knowledge of variety of instruments available for
4	To distinguish between variety of measuring instruments		required parameter and identify the appropriate one.
	available.	4	Analyze and classify different electrical measuring
5	To utilize various electrical measuring instruments for		instruments on basis of type of electrical/ physical quantity to
	different measurements.		be measured.
6	Estimate various parameters of electrical measuring	5	Evaluate different electrical measuring instruments
	instruments.	6	Test and solve various problems on electrical measuring
			instruments

Tooching Dlan

Sr · N o	Lec · No	Topic Code	Contents to be Covered	Planned Teaching Dates	Text Books (Page no) Reference Book (Page no)	URL's (NPTEL/OnlineMater ial/PPt/Video)	Application s (R&D/ Industry)	Learning Outcomes	CO mapping
Unit I –Generalized principles of measurements									
1	1	1	Measurement system measurement standards – characteristics – errors in measurement.calibr ation of meters- significance of IS standards of Instruments.	Day 1	T1 (17-24)	https://www.youtube.c om/watch?v=0gKX3Z mT5DU	C1, C2	Student will be able to explain errors in measurement.	CO-1
2	2	2	Classification of meters - operating forces - essentials of indicating instruments - deflecting, damping, controlling torques.	Day 2 to Day 3	T1 (25-39)	https://nptel.ac.in/cours es/108/105/108105153/	C1, C2	Student will be able to classify meters.	CO-2
3	3	3	Ammetersandvoltmeters-movingcoil,movingiron,constructionaldetailsdetailsandoperating,principlesprinciplesshuntsandmultipliersextension of range.	Day 4 to Day 5	T1 (78-95)	https://nptel.ac.in/cours es/108/105/108105153/	C1, C2	Student will be able to explain the operating principle of moving iron instruments.	CO-2
	•	•		Uni	t II – Measurem	ent of resistance			
4	4	4	Classification of resistance.Measure	Day 6	T2 (95-103)	https://www.youtube.c om/watch?v=ip6P7-	C2	Student will be able to classify resistances.	CO-2

			ment of medium resistances – ammeter and voltmeter method, substitution method, Wheatstone bridge method.			<u>gT2OE</u>			
5	5	5	Measurement of low resistances – Potentiometer method and Kelvin's double bridge method.	Day 7 to Day 8	T8 (120-134)	https://www.youtube.c om/watch?v=hP59aaUr 8iY	C2	Student will be able to explain working of Kelvin's double bridge.	CO-2
6	6	6	Measurement of high resistance: Loss of Charge Method, Direct Deflection Method,	Day 9	T1 (550- 554)	https://www.youtube.c om/watch?v=ZGEGZc 8M54o	C1	Student will be able to understand measurement of high resistance.	CO-2
7	7	7	Price's Guardwire method. Measurement of earth resistance.	Day 10	T2 (125-127)	https://www.youtube.c om/watch?v=TYVGnd neEXE	C1,C2	Student will be able to understand measurement of earth resistance	CO-5
		1			Unit III – AC	Bridges			
8	8	8	Generalized treatment of four- arm AC bridges.Sources and detectors. Maxwell's bridge, Hay's bridge Anderson bridge, Owens Bridge for self inductance measurement	Day 11 to Day 12	T1 (789-796)	https://www.youtube.c om/watch?v=I5k66ES HJHM&t=1s	C1, C4	Student will be able to explain the working of Maxwell's bridge.	CO-1; CO-2
9	9	9	Heaviside's bridge for mutual inductance	Day 13	T1 (803-815)	https://www.youtube.c om/watch?v=I9Fu0ZT1 mqQ	C2,C4	Student will be able to understand measurement of mutual inductance.	CO-2

			measurement						
10	10	10	De Sauty Bridge, Schering bridge for capacitance measurement.	Day 14	T2 (525-532)	https://www.youtube.c om/watch?v=6f7bgwk RfSI	C2	Student will be able to explain the working of Schering bridge.	CO-2; CO-4; CO-5
11	11	11	Wien's bridge frequency measurements.Sour ces of error in bridge measurements and precautions.Screeni ng of bridge components.	Day 15	T2 (568-572)	https://www.youtube.c om/watch?v=lRk3vBp H0bs	C2	Student will be able to understand the measurement of frequency	CO-1
			Unit IV -	- Introduction	on to high voltage	e and high current measu	rements		
12	12	12	Measurement of high DC voltages - measurement of high AC voltages - electrostatic voltmeters – sphere gaps - DC Hall effect sensors - high current measurements.	Day 16 to Day 17	T3 (124- 127)	https://www.youtube.c om/watch?v=e- kfKuHGflo	C3	Student will be able to understand the measurement of high DC voltages.	CO-1; CO-2
13	13	13	Study of Phasor Measurement Units (PMU).	Day 18	T3 (135-142)	https://www.youtube.c om/watch?v=IVFWHC wI8PU	C2,C3	Student will be able to explain the working of PMU.	CO-6
14	14	14	Current transformers and potential transformers – principle working, ratio and phase angle errors –	Day 19	T4 (159-165)	https://nptel.ac.in/cours es/108/105/108105153/	C2, C3	Student will be able to understand the working of current and potential transformers.	CO-3; CO-4

			numerical problems, Clamp on meters						
	1			Unit V	– Measurement o	f Power and Energy			
15	15	15	Principle of Measurement of active, reactive and apparent power single and in polyphasecircuits.	Day 20	T5 (435-446)	https://www.youtube.c om/watch?v=0jbvqPP m0z8	C3	Student will be able to know various types of powers in polyphase circuits	CO-1
16	16	16	Measurement of Energy in single and polyphase circuits.	Day 21	T5 (468-474)	https://nptel.ac.in/cours es/108/105/108105153/	C3	Student will be able to explain measurement of energy in single phase circuits.	CO-2
17	17	17	Electrodynamomet er Wattmeters, Construction, Working, Errors in wattmeter,	Day 22	T5 (525-528)	https://nptel.ac.in/cours es/108/105/108105153/	C3	Student will know various errors in wattmeter.	CO-3; CO-3
18	18	18	Single phase Energy meter, Theory and operation , compensation and adjustment.	Day 23	T7 (182-186)	https://www.youtube.c om/watch?v=bC- doinU1QM	C3	Student will be able to explain the operation of energy meter	CO-2; CO-4
19	19	19	Testing and calibration of single-phase energy meter by phantom loading	Day 24	T3 (192-196)	https://www.youtube.c om/watch?v=InvHHw QnoXk	C3	Student will be able to understand testing and calibration of single phase energy meter	CO-5
					Unit VI – Tra	insducers			
20	20	20	Definition and classification - common transducers for measurement of displacement,	Day 25	T1 (974-981)	https://www.youtube.c om/watch?v=CzafQ5G Wz4s	C4	Student will be able to explain classification of transducers	CO-2; CO-3; CO-4

			velocity, flow, liquid level, force, pressure, strain and temperature						
21	21	21	basic principles and working of LVDT, electromagnetic and ultrasonic flow meters, piezoelectric transducer,	Day 26	T3 (632-638)	https://www.youtube.c om/watch?v=6z- PIX3EKGI	C4	Student will be able to understand the working of LVDT.	CO-2; CO-3; CO-4
22	22	22	load cell, strain gauge, RTD, Thermistors, thermocouple, Need for instrumentation system, data acquisition system.	Day 27- 28	T1 (1011-1015)	https://www.youtube.c om/watch?v=IeOeh1d- U3w	C2,C4	Student will be able to explain operation of RTD.	CO-3; CO-4

Total number of lectures as per syllabus: -28

Total number of lectures as per planned: -28

	Content Beyond Syllabus Topic – Planned					
Sr. No.	Content Beyond Syllabus Topic	Date Given	Mapped with CO's not covered in TP			
1	Using an Un-Balanced AC Wheatstone Bridge to Measure Capacitance and Inductance	22/11/2021	1,2,3			

Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year
T1	A course in Electrical and Electronic Measurements & instrumentation	Sawhney A.K	Dhanpat Rai	22 nd Edition
T2	A course in Electrical & Electronic Measurement & Instrumentation	J. B. Gupta	S K Kataria & Sons	3 rd Edition
Т3	Electronic Instrumentation	Kalsi H. S.	TataMcGrawHill, New Delhi,2012	5 th Edition
T4	Electrical Measurements & Measuring Instruments	Golding E.W	Wheeler Pub	2 nd Edition
Т5	Modern Electronics Instrumentation	Cooper W.D.	Prentice Hall of India	4 th Edition
Т6	Electronic Measurements & Instrumentation	Oliver & Cage	McGraw Hill	Publication year: 2014
Τ7	Measurements Systems	E.O Doebelin and D.N Manik, Doebelin	McGraw Hill Education (India) Pvt. Ltd	Sixth edition
Т8	Electrical and Electronics Measurements and Instrumentation,	P.Purkait, B.Biswas, S.Das and C. Koley	McGraw Hill Education (India) Pvt. Ltd.,2013	7 th Edition

Company/Industry:

Code	Company/Industry Name	Website	Detailed Information
C1	Maxwell Scientific Corporation	http://www.maxwellindia.co m/index.html	Maxwell Scientific Corporation develops products using finest grade of raw materials like brass, wire, wooden boxes. The range is widely used in diverse industries due to
			its efficiency, excellent performance, high durability, strength and corrosion resistance nature.
C2	Nippen Electrical Instruments Company	https://www.nippenco.com/ mimcmeter.html	Nippen has been a prominent name in the field of Electrical and Electronic Measuring Instrument for more than the last four decades These find applications in Control panels for industry, including Generating Sets, and promintnt users are Electricity utilities, products being sold primarily through Electrical equipment Distributors. Our Analogue and Digital panel meters, Insulation / Earth testers, Current transformers and Shunts have been in use for many years. A newer generation of micro controller based products, includes Multifunction meters, Energy meters, Power Factor Controllers, Maximum Demand Meters / controllers, and transducers to complement the range. Quality, Reliability and

			Durability of our products are the key characteristics that have made Nippen an undisputable leader in the industry.
C3	Schneider Electric	https://www.se.com/in/en/	Schneider's purpose is to empower all to make the most of our energy and resources, bridging progress and sustainability for all. At Schneider, we call this Life Is On. We believe access to energy and digital is a basic human right. Our generation is facing a tectonic shift in energy transition and industrial revolution catalysed by accelerated digitisation in a more electric world. Electricity is the most efficient and best vector for decarbonisation; combined with a circular economy approach, we will
			achieve a climate-positive impact as part of the United Nations Sustainable Development Goals.
C4	Hi Tech Transducers & Devices	https://hitechtransducers.co m/index.html	In today's High Tech Industrial world, process industries call for highly precise monitoring devices which have direct impact on plant operations and on the organizations balance sheet as a whole. Keeping in mind the critical need of the precision monitoring equipement Mr. D.V.Kulkarni, founder of the company decided to cater the industrial requirement.

Research Paper:

Code	Title of the Paper	First Author Name	Journal/Conference Name	DOI no.	Issue/Volume/Page no/Year
P1	A new topology for a current-mode wheatstone bridge	Y.H. Ghallab	IEEE Transactions on Circuits and Systems II: Express Briefs	10.1109/TCSII.2005.85 4589	16 Jan 2016
P2	Modified Maxwell-Wien bridge with auto source balance	Ding Cheng	2008 Conference on Precision Electromagnetic Measurements Digest	10.1109/CPEM.2008.4 574906	8-13 June 2008
Р3	IOT Based Smart Energy Meter for Efficient Energy Utilization in Smart Grid	Bibek Kanti Barman	2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE)	10.1109/EPETSG.2018. 8658501	1-2 June 2018
P4	A Novel TDM-Based High-Precision Wattmeter	Ljubisa Jovanuvic	IEEE Transactions on Instrumentation and Measurement	10.1109/TIM.2017.265 3458	2 February 2017
P5	Highly Efficient Piezoelectric Micromachined Ultrasound Transducer (PMUT) for Underwater Sensor Networks	Sina Sadeghpour	2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS &	10.1109/TRANSDUCE RS.2019.8808204	23 – 27 June 2019

	EUROSENSORS XXXIII)	

Mr. P. V. Ambade Subject Teacher Mr. A. V. Joshi Academic Incharge Dr. S. R. Vaishnav HOD (EE)

JAIDEV EDUCATION SOCIETY'S J D COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Website: www.jdcoem.ac.inE-mail: info@jdcoem.ac.in An Autonomous Institute, with NAAC "A" Grade **Department of Electrical Engineering** "Rectifying Ideas, Amplifying Knowledge"

2021-22 (Even Sem)

VISION	MISSION
"To develop competent and committed Electrical Engineers to serve the society"	 To impart quality education in the field of Electrical Engineering. To be excellent learning centre through research and industry interaction.

reaching Plan							
Course: B. Tech in Electrical Engineering	Year/Semester :4th Semester (2nd	Year)					
Name of the Teacher :Mr. P. V. Ambade	Subject Code :EE4T003						
Subject : Power Station Practice	Section :-						
Periods per Week (each 60 min)	Lecture	3					
	Tutorial	1					
	Practical	1					

Course Objective	Course Outcomes
Course Objective 1 Rememberfundamentalprinciplesofpowerplantsystem 2 Understandvariouspowerplantanditspractices 3 ToapplyEconomicOperation ofPowerSystems. 4 Toanalyze EconomicOperationofPowerSystems 5 Toutilizeconceptofpowerplantoperationsanddemandalsoeval uationofsame. 6 Device second device for event between between times of the second device se	Course Outcomes 1 Rememberthebasicoperationsofvariouspower plants 2 Understandandinterprettherequirementsandbasicsofpowerplantinstallationand siteselection 3 ApplyknowledgetoEconomicOperationofPowerSystemsandtheknowledgerela tedwithitsneed 4 Analyzevariouselectricpowerplantsoperationsanddistinguishbetween properties. 5 Evaluatethermal,hydro, nuclear, gaspowerplantalsoabletoExplainitsfundamentals.
⁶ Designparametersofbasicsofpowerplantoperationanditsecono my.	 ⁶ DesignEconomicOperationofPowerSystemsandalsoabletogivesolutionsimple mentationofpower plant on its basics.

Teeching Dlan

Sr	Lec	Topic	Contents to be		Text Books	URL's	Application	Learning Outcomes	CO
•	•	Code	Covered	Planned	(Page no)	(NPTEL/OnlineMater	s (R&D/		mapping
N	No			Teaching	Reference	ial/PPt/Video)	Industry)		
0				Dates	BOOK (Page no)				
					Unit I _Intro	duction			
			Electric energy		T1 (17-24)	https://www.youtube.c	C1. C2		CO-1
			demand and growth		,	om/watch?v=0gKX3Z	,		
			in India, electric			mT5DU			
			energy sources.						
			Thermal Power					Student will be able to	
1	1	1	Plant: Siteselection,	Day 1				explain basics of thermal	
			general layout and					power plant.	
			operation of plant,						
			detailed description						
			narts						
			HvdroElectricPlant		T1 (25-39)	https://nptel.ac.in/cours	C1. C2		CO-2
			s:Classifications,lo			es/108/105/108105153/	,		
			cationandsiteselecti						
2	2	2	on,detaileddescripti	Day 2 to				Student will be able to	
	2	-	onofvariouscompo	Day 3				classify meters.	
			nents, general						
			layout and						
					T1 (78-95)	https://pptel.ac.in/cours	C1 C2		CO-2
			brief description		11 (70 90)	es/108/105/108105153/	01, 02		
			of impulse,						
			reaction, Kaplan					Student will be able to	
3	3	3		Day 4 to				explain the operating	
			advantages&disa	Day 5				principle of moving iron	
			dvantages, hydro-					mstruments.	
			potential inIndia						
				-	Unit II – Nuclear	Power Plant			
			Location, site		T2 (95-103)	https://www.youtube.c	C2	Student will be able to	CO-2
4		1	selection general	Day 6		om/watch?v=ip6P7-			

	1								
			operation of plant. Brief description of different types ofreactors Moderator material,						
5	5	5	fissile materials, control of nuclear reactors, disposal of nuclear wastematerial,shiel ding.	Day 7 to Day 8	T4 (120-134)	https://www.youtube.c om/watch?v=hP59aaUr 8iY	C2	Student will be able to explain working of Kelvin's double bridge.	CO-2
6	6	6	GasTurbinePlant:O perationalprinciple ofgasturbineplant& itsefficiency, fuels, open and closed- cycle plants, regeneration, inter- cooling and reheating, role and applications.	Day 9	T1 (550- 554)	https://www.youtube.c om/watch?v=ZGEGZc <u>8M54o</u>	C1	Student will be able to understand measurement of high resistance.	CO-2
7	7	7	DieselPlants:Die selplantlayout,co mponents&theirf unctions,itsperfor mance,roleandap plications	Day 10	T2 (125-127)	https://www.youtube.c om/watch?v=TYVGnd neEXE	C1,C2	Student will be able to understand measurement of earth resistance	CO-5
					Unit III – Sub-sta	ationsLayout			
8	8	8	Types of substations, bus-bar arrangements, typical layout of substation. Power Plant Economics andTariffs: Load curve, load	Day 11 to Day 12	T1 (789-796)	https://www.youtube.c om/watch?v=I5k66ES HJHM&t=1s	C1, C4	Student will be able to explain the working of Maxwell's bridge.	CO-1; CO-2

			duration curve, different factors related to plants and consumers, Cost ofelectrical energy,						
			generation cost,						
9	9	9	Effect of Load factor on unit cost. Fixed and operatingcost of different plants,	Day 13	T1 (803-815)	https://www.youtube.c om/watch?v=I9Fu0ZT1 mqQ	C2,C4	Student will be able to understand measurement of mutual inductance.	CO-2
10	10	10	role of load diversity in power system economy. Objectives and forms ofTariff;	Day 14	T2 (525-532)	https://www.youtube.c om/watch?v=6f7bgwk <u>RfSI</u>	C2	Student will be able to explain the working of Schering bridge.	CO-2; CO-4; CO-5
11	11	11	Causes and effects of low power factor, advantages of power factor improvement, differentmethodsfo rpowerfactorimpro vements	Day 15	T2 (568-572)	https://www.youtube.c om/watch?v=lRk3vBp H0bs	C2	Student will be able to understand the measurement of frequency	CO-1
				Unit IV	– EconomicOpera	ationof PowerSystems			
12	12	12	Characteristics of steam and hydro- plants, Constraints in operation,	Day 16 to Day 17	T3 (124- 127)	https://www.youtube.c om/watch?v=e- kfKuHGflo	C3	Student will be able to understand the measurement of high DC voltages.	CO-1; CO-2
13	13	13	Economic load scheduling ofthermalplantsNeg lectingandconsideri ng transmissionLosses	Day 18	T3 (135-142)	https://www.youtube.c om/watch?v=IVFWHC wI8PU	C2,C3	Student will be able to explain the working of PMU.	CO-6

			,						
14	14	14	Penalty factor, losscoefficients,I ncrementaltrans mission loss. Hydrothermal Scheduling	Day 19	T4 (159-165)	https://nptel.ac.in/cours es/108/105/108105153/	C2, C3	Student will be able to understand the working of current and potential transformers.	CO-3; CO-4
	1	I		Unit	V –NonConventio	onalEnergySources			
15	15	15	Power Crisis, future energy demand, role of Private sectors in energy management	Day 20	T3 (435-446)	https://www.youtube.c om/watch?v=0jbvqPP m0z8	C3	Student will be able to know various types of powers in polyphase circuits	CO-1
16	16	16	Concepts &principals of MHD generation,	Day 21- 23	T4 (468-474)	<u>https://nptel.a/c.in/cour</u> <u>ses/108/105/10810515</u> <u>3/</u>	C3	Student will be able to explain measurement of energy in single phase circuits.	CO-2
17	17	17	Solar power plant, Wind Energy,	Day 24- 26	T4 (525-528)	https://nptel.ac.in/cours es/108/105/108105153/	C3	Student will know various errors in wattmeter.	CO-3; CO-3
18	18	18	Geothermal Energy	Day 27	T2 (182-186)	https://www.youtube.c om/watch?v=bC- doinU1QM	C3	Student will be able to explain the operation of energy meter	CO-2; CO-4
19	19	19	Tidal energy,OceanTher mal Energy	Day 28	T3 (192-196)	https://www.youtube.c om/watch?v=InvHHw QnoXk	C3	Student will be able to understand testing and calibration of single phase energy meter	CO-5

Total number of lectures as per syllabus: -28

Total number of lectures as per planned: -28

Assignment Plan

Assignment		Given	Submission	Mapped	
No.	Торіс	Date	Date	With CO	
1	Hydroelectric Power Plant and Gas Turbine Power Plant	29/3/2022	11/4/2022	CO1, CO2, CO3, CO4	
2 Non- conventional energy sources		24/4/2022	7/5/2022	CO1, CO3, CO5, CO6	
	Content Beyond Syllab	us Topic – Pla	nned		
Sr. No.	. No. Content Beyond Syllabus Topic		en Mapped	with CO's not covered in TP	
1	1 Dynamic Stability Analysis of Wind Turbines underDifferentControl Strategies		2	CO2, CO4, CO5, CO6	

Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year
T1	GenerationofElectricalEnergy	B.R.Gupta	DhanpatRai	22 nd Edition
T2	AtextbookonPowerSystemEngg	Soni,Gupta&Bhatnagar,	DhanpatRai&Co	3 rd Edition
Т3	OperationandcontrolofPowerSystem	P.S.R.Murthy	BSPublications	5 th Edition
T4	ElementsofPowerSystemAnalysis	W.D.Stevenson	McGrawHill	2 nd Edition

Company/Industry:

Code	Company/Industry Name	Website	Detailed Information
C1	Maxwell Scientific	http://www.maxwellindia.co	Maxwell Scientific Corporation develops products using finest grade of raw materials
	Corporation	<u>m/index.html</u>	like brass, wire, wooden boxes. The range is widely used in diverse industries due to
			its efficiency, excellent performance, high durability, strength and corrosion
			resistance nature.
C2	Nippen Electrical	https://www.nippenco.com/	Nippen has been a prominent name in the field of Electrical and Electronic
	Instruments Company	mimcmeter.html	Measuring Instrument for more than the last four decades These find applications
			in Control panels for industry, including Generating Sets, and promintnt users are
			Electricity utilities, products being sold primarily through Electrical equipment
			Distributors. Our Analogue and Digital panel meters, Insulation / Earth testers,

			Current transformers and Shunts have been in use for many years. A newer generation of micro controller based products, includes Multifunction meters, Energy meters, Power Factor Controllers, Maximum Demand Meters / controllers , and transducers to complement the range. Quality, Reliability and Durability of our products are the key characteristics that have made Nippen an undisputable leader in the industry.
C3	Schneider Electric	https://www.se.com/in/en/	Schneider's purpose is to empower all to make the most of our energy and resources, bridging progress and sustainability for all. At Schneider, we call this Life Is On. We believe access to energy and digital is a basic human right. Our generation is facing a tectonic shift in energy transition and industrial revolution catalysed by accelerated digitisation in a more electric world. Electricity is the most efficient and best vector for decarbonisation; combined with a circular economy approach, we will achieve a climate-positive impact as part of the United Nations Sustainable Development Goals.
C4	Hi Tech Transducers & Devices	https://hitechtransducers.co m/index.html	In today's High Tech Industrial world, process industries call for highly precise monitoring devices which have direct impact on plant operations and on the organizations balance sheet as a whole. Keeping in mind the critical need of the pre- cision monitoring equipement Mr. D.V.Kulkarni, founder of the company decided to cater the industrial requirement.

Research Paper:

Code	Title of the Paper	First Author Name	Journal/Conference Name	DOI no.	Issue/Volume/Page no/Year
P1	Cooperative DMPC-Based Load Frequency Control of Solar Thermal Power Plant	Y.H. Ghallab	IEEE Transactions on Circuits and Systems II: Express Briefs	10.1109/TCSII.2005.85 4589	16 Jan 2016
P2	Voltage control by small hydro power plant integrated into a virtual power plant	Ding Cheng	2008 Conference on Power system Digest	10.1109/CPEM.2008.4 574906	8-13 June 2008
Р3	Analysis on Spent Fuel Pool Monitoring System in Nuclear power plant after Fukushima Accident	Bibek Kanti Barman	2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE)	10.1109/EPETSG.2018. 8658501	1-2 June 2018

P4	Simulation Model of Autonomous Solar power plant with Dual-Axis Solar Tracker	Ljubisa Jovanuvic	IEEE Transactions on Instrumentation and Measurement	10.1109/TIM.2017.265 3458	2 February 2017
Р5	Index for allocation of tidal current power plant for reactive margin improvement	Sina Sadeghpour	2019 20th International Conference on Power Systems, Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)	10.1109/TRANSDUCE RS.2019.8808204	23 – 27 June 2019

Subject Teacher

Academic InchargeHOD (EE)

JAIDEV EDUCATION SOCIETY'S J D COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Website: www.jdcoem.ac.in E-mail: info@jdcoem.ac.in An Autonomous Institute, with NAAC "A" Grade Department Of Electrical Engineering "Igniting minds to illuminate the world" 2021-22 (Odd Sem)

<u>VISION</u>	MISSION
"To develop competent and committed Electrical Engineers to serve the society"	1. To impart quality education in the field of Electrical Engineering.
	2 To be excellent learning center through research and industry interaction

Teaching	Plan
----------	------

Course	: B. Tech in Electrical Engineering	Year/Semester : 5 th Semester (3rd Year)	
Name of the Tea	acher : Prof. Ashutosh V.Joshi	Subject Code : EE5T003	
Subject	: Power System-II	Section :A	
Periods per We	ek (each 60 min)	Lecture 3	
		Tutorial -	
		Practical 2	

	Course Objective	Course Outcomes
1.	To understand the the different parameters of power system	1. Define the different parameters of power system operation.
	operation.	2. Illustrate the different parameters of power system operation and
2.	To understand the different parameters of power system control.	control.
3.	To study different issues related to power systems.	3. To identify the different issues related to power systems
4.	After learning, students will be able to analyze different solution	4. Analyze the different solution methods related to power system
	methods related to power system	5. Choose amongst the different analytical & numerical methods for power
5.	Understand amongst the different analytical & numerical methods	flow solutions.
	for power flow solutions	6. Solve the different problems related to cost load flow, fault, reactive
6.	Understand different problems related to cost load flow, fault,	power and Stability constraints in the power systems.
	reactive power and Stability constraints in the power systems.	

Sr. No	Lec. No	Topic Code	Contents to be Covered	Planned Teaching Dates	Text Books (Page no) Reference Book	URL's (NPTEL/OnlineMaterial/PPt /Video)	Applications (R&D/ Industry)	Learning Outcomes	CO mapping
			LINIT		(Page no)	NG OF DOWED SVST	FMS		
	1	1.02	Economic Operation of Power Systems:	LI	T1 (Pg:1)	Video: https://www.digimat.in/nptel/c ourses/video/108107114/L01. html (IIT, Roorkee), Time: 5:10 min to 25:13 min Notes: <u>https://nptel.ac.in/cours</u> <u>es/112103019/1</u> (IIT, Guwahati)		To study different parameters of power system operation.	CO1
1	2	1.03	Distribution of loads between units within a plant	L2	T1 (Pg:3)	Ppt: Drawing, Slide no. 81-82		To study Distribution of loads between units within a plant	CO1
	3	1.04	Economic division of load between units in a plant	L3	T1 (Pg:7)	Notes: <u>https://nptel.ac.in/cours</u> es/112103019/1		To study Economic division of load between units in a plant	CO1
	4	1.05	transmission loss as a function of plant generation,	L4	T1 (Pg:9)	Notes:https://nptel.ac.in/courses/112103019/1Notes:https://nptel.ac.in/courses/112103019/5		To study different parameters of power control	CO2
	5	1.06	Calculation of loss co- efficient	L5	T1 (Pg:12)	Notes:https://nptel.ac.in/courses/112103019/11Notes:https://nptel.ac.in/courses/112103019/13		To study different parameters in calculation of loss co-efficient	CO2
					Unit-II LOAD FLO	W STUDIES			
	6	2.01	Distribution of load between plants,	L6	R1 (Pg:135)	Notes: <u>https://nptel.ac.in/cours</u> es/112103019/1		To study different parameters of power system operation	CO3
	7	2.02	Introduction to unit commitment,	L7	R1 (Pg:135)	Notes: <u>https://nptel.ac.in/cours</u> es/112103019/3		To study different parameters of power system control	
2	8	2.03	Numerical examples	L8	R1 (Pg:138)	Notes:https://nptel.ac.in/courses/112103019/1Notes:https://nptel.ac.in/courses/112103019/3			C01,C02
	9	2.04	Load Flow Studies:	L9	R1 (Pg:138)	Notes:https://nptel.ac.in/courses/112103019/9Notes:https://nptel.ac.in/cours		To study different parameters of Load Flow Studies	,

						<u>es/112103019/3</u>		
	10	2.05	Network model formulation	L10	R1 (Pg:142)	Notes:https://nptel.ac.in/cours es/112103019/1 Notes:https://nptel.ac.in/cours es/112103019/3	 To study different parameters of Load Flow Studies	CO1
	11	2.06	Applications of iterative techniques like Gauss-Siedal method, and Newton- Rap son method, etc.	L11	R1 (Pg:144)	Notes:https://nptel.ac.in/cours es/112103019/10 Notes:https://nptel.ac.in/cours es/112103019/3	 To study different parameters of Load Flow Studies	CO1
	12	2.07	Applications of iterative techniques like Gauss-Siedal method, and Newton- Rap son method, etc.	L12	R1 (Pg:145)	Notes: <u>https://nptel.ac.in/cours</u> es/112103019/1 Notes: <u>https://nptel.ac.in/cours</u> es/112103019/3	 To study different parameters of Load Flow Studies	CO1
	13	2.08	Numerical	L13	R1 (Pg:179)	Notes: <u>https://nptel.ac.in/cours</u> es/112103019/1 Notes: <u>https://nptel.ac.in/cours</u> es/112103019/3	 To study different parameters of power system operation and control	CO3,4,5,6
	14	2.09	Active Power Control Basic generator control,	L14	R1 (Pg:197)	Notes:https://nptel.ac.in/cours es/112103019/1 Notes:https://nptel.ac.in/cours es/112103019/3	 To study different parameters of Active Power Control Basic generator control	CO2
	15	2.10	Load frequency control,Load, prime mover and governor model, Numerical examples	L15	R1 (Pg:205)	Notes:https://nptel.ac.in/cours es/112103019/1 Notes:https://nptel.ac.in/cours es/112103019/3	 To study different parameters of Load frequency control	CO2
				Unit-III	SYMMETRICAL	FAULT ANALYSIS		
	16	3.01	Symmetrical Components transformation analysis	L16	T1 (Pg:267)	https://nptel.ac.in/courses/112 103019/1 https://nptel.ac.in/courses/113 103019/1 https://nptel.ac.in/courses/112	 To study the Symmetrical Components transformation analysis	CO1
3	17	3.02	Symmetrical Components transformation analysis	L17	T1 (Pg:267)	<u>103019/1</u> <u>https://nptel.ac.in/courses/112</u> <u>2103019/1</u> <u>https://nptel.ac.in/courses/112</u> <u>103019/1</u>	 To study the Symmetrical Components transformation analysis	CO1
	18	3.03	Numerical examples	L18	T1 (Pg:270)		 To study the Symmetrical Components transformation analysis	CO3,4,5,6

	19	3.04	Numerical examples	L19	T1 (Pg:277)		 To study the Symmetrical Components transformation analysis	CO2
	20	3.05	Analysis of transformer	L19	T1 (Pg:280)		 To study the Symmetrical Components tanalysis of transformer	CO2
	21	3.06	Analysis of transmission line	L20			 TostudytheSymmetricalComponentstanalysisoftransmission line	CO1
	22	3.07	Analysis of Synchronous machines	L20			 To study the Symmetrical Components tanalysis of Synchronous machines	CO1
	23	3.08	Sequence components of network	L20			 To study Sequence components of network	CO1
	24	3.09	Sequence components of network	L21			 To study Sequence components of network	CO2
	25	3.10	Numerical examples	L22			 	CO2,3,4,5
				Unit-IV l	UNSYMMETRICAL	L FAULT ANALYSIS		
4	26	4.01	Fault analysis and evaluation of faults on loaded unloaded synchronous generator,	L23	T1 (Pg:289)	https://nptel.ac.in/courses/112 103015/1	To understand diff. methods of fault analysis	CO1
	27	4.02	Fault analysis and evaluation of faults on loaded unloaded synchronous generator,	L24	T1 (Pg:289)	https://nptel.ac.in/courses/112 103015/1	To understand diff. methods of fault analysis	CO1
	28	4.03	Selection of circuit breaker	L25	T1 (Pg:290)	https://nptel.ac.in/courses/112 1037019/1	To understand diff. methods of fault stability study	CO1
	29	4.04	asymmetrical fault evaluation of a) Line to ground fault	L26	T1 (Pg:290)	https://nptel.ac.in/courses/112 103019/1	To understand diff. methods of fault analysis and stability study	CO2

	30	4.05	asymmetrical faultevaluation of a) Line to ground fault	L27	T1 (Pg:290)	<u>https://nptel.ac.in/courses/112</u> <u>103019/1</u>	To understand diff. methods of fault analysis and stability	CO2
	31	4.06	b) Line to line c) Double line to ground d) single & double conductor open faults,	L28	T1 (Pg:293)	https://nptel.ac.in/courses/112 103019/1	 To understand diff. methods of fault analysis and stability study	CO1
	32	4.07	b) Line to line c) Double line to ground d) single & double conductor open faults,	L29	T1 (Pg:293)	https://nptel.ac.in/courses/112 103019/1	 To understand diff. methods of fault analysis and stability study	CO1
	33	4.08	Numerical examples	L30	T1 (Pg:290)	https://nptel.ac.in/courses/112 103019/1	 To understand diff. methods of fault analysis and stability study	CO2,3,4,5
	34	4.09	Numerical examples	L30	T1 (Pg:290)	https://nptel.ac.in/courses/112 103019/1	 To understand diff. methods of fault analysis and stability study	CO2,3,4,5
	35	4.10	Numerical examples	L30	T1 (Pg:290)	https://nptel.ac.in/courses/112 103019/1	 To understand diff. methods of fault analysis and stability study	CO2,3,4,5
					Unit-V STAB	ILITY		
	36	5.01	Dynamics of a synchronous machine	L31	T1 (Pg:297)	Video: https://www.digimat.in/nptel/c ourses/video/108107114/L01.	 To understand Dynamics of a synchronous machine	CO2
	37	5.02	Power angle equation	L32	T1 (Pg:299)	html (IIT, Roorkee), Time: 5:10 min to 25:13 min Notes: <u>https://nptel.ac.in/cours</u>	 To understand stability constraints in power systems	CO1
5	38	5.03	Steady state stability,	L33	T1 (Pg:305)	es/112103019/1 (IIT, Guwahati) https://nptel.ac.in/courses/112	 To understand stability constraints in power systems	CO1
	39	5.04	Equal area criterion	L34	T1 (Pg:300)	<u>103019/1</u> <u>https://nptel.ac.in/courses/112</u> <u>103019/1</u>	 To understand stability constraints in power systems	CO2
	40	5.05	Numerical solution of swing equation	L35	T1 (Pg:329)		 To understand stability constraints in power systems	CO1
	41	5.06	Factors affecting transient stability	L36	T1 (Pg:333)		 To understand Factors affecting transient stability	CO1

	42	5.07	Critical clearance angle	L36	T1			CO2
					(1 g.546)			
	43	5.08	Numerical	L37	T1 (Pg:353)		 To understand stability constraints in power systems	CO2,3,4,5
	44	5.09	Numerical	L37	T1 (Pg:358)			CO2,3,4,5
	1	1	l	Unit-VI L	OAD DISPATCH C	ENTER FUNCTIONS		
	45	6.01	Load dispatch center functions,	L38	T1 (Pg:69)	https://nptel.ac.in/courses/112 103019/1	 To understand Load dispatch center functions	CO1
	46	6.02	Contingency analysis	L38	T1 (Pg:87)		 To understand Contingency analysis in power systems	CO2
6	47	6.03	preventive, emergency and restorative Control	L39	T1 (Pg:91)		 To understand control strategies in power systems	CO1
	48	6.04	power quality:	L39	T1 (Pg:103)		 To understand basics of power quality	CO1
	49	6.05	Power quality ,def., causes, affects, slandered and mitigation methods	L40	T1 (Pg:132)		 To understand basics of power quality ,def., causes, affects, slandered and mitigation methods	CO1
Con	tinue		•					

Total number of lectures as per syllabus: - 40

*T=Text Book; R= Reference Book; C= Company name; R= Research Paper

Total number of lectures as per planned: - 48

	Tutorial Plan								
Week	Торіс	No. Of Problems	Mapped With CO						
1	Numericals on Economic operation of power systems.	04	II						
2	Numericals on Load flow studies.	02	III						
3	Numericals on Symmetrical fault analysis.	04	IV						
4	Numericals on unsymmetrical fault analysis.	03	V						

1	Static Synchronous Series Compensator (SSSC)	22/10/21	I	, II, III, IV, V, VI	
Sr. No.	Content Beyond Syllabus Topic	Date Given	Ma	Mapped with CO's	
	Content Beyond Syllab	us Topic – Plan	ned		
2	Symmetrical and unsymmetrical fault analysis	16/10/21	22/10/21	III, IV	
1	Economic operation of power systems	16/8/21	22/8/21	I, II	
No.	Горіс	Date	Date	With CO	
Assignment	Tracia	Given	Submission	Mapped	
	Assignmen	t Plan	· · · ·		
6	Numericals on load dispatch.		01	VI	
5	Numericals on Stability.		03	V	

Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year
T1	Power System Analysis.	Stevension .W. D-	Tata Mcgraw Hill	10th Edition, 2011
T2	Power System Analysis. (Tata Mcgraw Hill)	Ashfaq Hussian -	Tata Mcgraw Hill	3 rd Edition, 2011
Т3	Modern Power System Analysis.(Tata Mcgraw Hill)	Nagrath & Kothari	Tata Mcgraw Hill	Revised, 2014

Company/Industry:

Code	Company/Industry Name	Website	Detailed Information			
C1	ABB India	https://www.new.abb.com/	This company is engaged in the production and supply of Drives,Low voltage Products, relays,C.Bs and other power system equipments and systems,PLC, Automation,Motors Generators etc.			

C2	Siemens	https://www.siemens.com/	This company is considered to be the best leading manufacturer and supplier of cost
			efficient ,safe and sustainable electrical infrastructure. It also supplies other devices
			like Electrical products involving Transformers ,motors, relays,C.Bs and other power
			system equipments etc.

Research Paper:

Code	Title of the Paper	First Author Name	Journal/Conference Name	DOI no.	Issue/Volume /Page no/Year
P1	A Practical Distributed Finite-Time Control Scheme for Power System Transient Stability	Ziqiang Wang ; Jie Wang	IEEE Transactions on Power Systems	DOI 3320 - 3331	Publication Year: 2020, Page(s):
P2	A Linear Programming Approximation of Distributionally Robust Chance- Constrained Dispatch With Wasserstein Distance	Anping Zhou ; Ming Yang ; Mingqian g Wang ; Yuming Zhang	IEEE Transactions on Power Systems	3366 - 3377	Publication Year: 2020, Page(s): 3366 - 3377

Prof. Ashutosh Joshi Subject Teacher Prof. Ashutosh Joshi Academic Incharge

Dr.S.R.Vaishnav HOD (EE)

JAIDEV EDUCATION SOCIETY'S J D COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Website: www.jdcoem.ac.in An Autonomous Institute, with NAAC "A" Grade Department of Electrical Engg

2021-22 (VI Sem)

<u>VISION</u>	MISSION
To develop competent and committed Electrical Engineers to serve the society"	 To impart quality education in the field of Electrical Engineering. To be excellent learning center through research and industry interaction.

	88						
Course	: B. Tech in Electrical Engg	Year/Semester	::6 th Semester (3	Brd Year)			
Name of the Teacher : Dr.Satish Vaishnav		Subject Code	: EE6T002				
Subject	: Advance Control System	Section	:				
Periods per Week (1 hour)		Lecture		3			
		Tutorial		1			
		Practical					

Teaching Plan

Course Objective	Course Outcomes
	 CO1: To remember the basic concepts of compensation, State variable representation, Controller Tuning, CO2: To understand the performance of compensators, State
	variable analysis, parameter optimization, Controller tuning, Nonlinear Control System, Digital Control system.
	CO3: To apply different concepts to find STM, Solution of State Equation, controllability, observabilit, stability of non- linear control system,
	CO4: To analyze the performance of compensators, to investigate Controllability and Observability of the system, digital control systems using the Z-transformation, and nonlinear system using the describing function technique and phase

plane analysis CO5: To evaluate STM,Solution of State Equation, Describing functions, effect of sampling period on transient response CO6: To design compensators, SVF and construction of Trajectory
Irajectory

Sr. No	Lec. No	Topic Code	Contents to be Covered	Planned Teaching	Text Books (Page no) Reference Book	URL's (NPTEL/OnlineMaterial /PPt/Video)	Applications (R&D/ Industry)	Learning Outcomes	CO mapping
				Dates	(Page no)				
				U	Init IV– PID (Controllers			
		4.1	Revision from		T1 (200 – 224)	https://www.youtube.c		Students should understand	
			Control System I			om/watch?v=vWzUnJw		Block Diagram, Transfer Function Time Response	
					T1 (200 224)	<u>QG60</u>		i unetion, i inte itesponse,	
		4.2	Revision from		11 (200 – 224)	https://www.youtube.c			
			Control System I			om/watch?v=vWzUnJw			
						<u>QG60</u>			
		4.3	Introduction to P,I,D			https://www.youtube.c		Students should understand	
			Controller			om/watch?v=nBAXf3r12		P,1 and D Controller	
						<u>wM</u>			
					T1(165 - 168				
		4.4	Individual effect on					Students should understand	
			overall System					Effect of P,I and D	
			Performance					Controller on system	
		15	P PI and PID			https://www.youtube.c		Students should understand	
		4.5	Control& effect on			$\frac{111123.77}{2}$ www.youtube.c		Effect of P,I D Controller	
			overall system						
			nerformance						
		16	Numerical Examples						
		4.0							
		4.7	Tuning of PID						
			Controller						

	I	Unit V Nonlinear	Control System		
5.1	jump resonance	(T1)585		Students should understand the phenomenon	
5.2	Types of non - linearities.	(T1)588-592	https://www.youtube.com/ watch?v=c8sIaLjJ	Students should learn different types of Nonlinearities	
5.3	Describing function analysis and its assumptions.	(T1)625-626		Students should understand the concept of Describing Function method	
5.4	Describing function of some common non- Linearities	(T1)627-(T1)641	https://www.youtube.c om/watch?v=NtRhLIJPD sE	Students should understand how to apply DB analysis to common Nonlinearities	
5.5	Problems				
5.6	Problems				
5.7	Problems				
5.8	Limit cycles	(T1)606-607	https://www.youtube.c om/watch?v=w9hWgSH RM	Students should undertand the limit cycle behaviour	
5.9	Limit cycles		https://www.youtube.c om/watch?v=w9hWgSH R M		
5.10	Singular Points	595-600		Students should learn different types of Singular points	
5.11	Stability from nature of singular points.	604 - 606		Students should learn to analyse the stability from singular points	
5.12	Isocline method	613-616	https://www.youtube.c om/watch?v=vEeN9vwS g6o	Students should understand the construction of Phase Trajectory	
5.13	Delta method.	617-618		To understand the construction of Phase Trajectory	
			Ctata Vaniahl		
		Unit II Design by	State Variable		
	Review of state variable representations	1 1(441-471)	https://www.youtube.com/ watch?v=d34nosvuc	Students should be able to obtain different state variable form	

1	2.2	Concept of State and	(T1)449 - 452		
3	2.3	General form Of	452-455	https://www.youtube.c	Students should learn to derive the State Equation
		state Equation		<u>Os</u>	
4	2.4	Formulation of state Equation for physical system	457 -460		
5	2.5	RLC Network, Armature controlled and field controlled DC Servomtor	457-460		
	2.6	diagonalization of state model	472		Students should be able to Diagonalize system matrix
	2.7	eigen values and eigen vectors	472-478		To learn about Eigen Values and Eigen Vectors
	2.8	generalized eigen vector	478-481		To learn the concept about Generalized Eigen Vector
	2.9	properties of state transition matrix (STM) Power Series Method	483-486	https://www.youtube.c om/watch?v=5hPivwvZ Rn8	Able to compute STM by Laplace transform
	2.10	Computation of STM by Laplace transform	485-486		
	2.11	Computation of STM by Cayley Hamilton theorem	490-493		Abble to compute STM by Cayley Hamilton theorem
	2.12	Solution of state equation.	481-483	https://www.youtube.com/ watch?v=6iqj_vUxMXc	How to evaluate solution of a state equation
	2.13	Problems			
	2.14	Problems			
	2.15	Concept of Controllability and Observability	493	https://www.youtube.com /watch?v=BEngBq49Ibo	To study the definition of Controllability and Observability
	2.16	Gilbert's test & Kalman's test for Controllability	494-499		How to apply the tests to evaluate Controllability

	2.17	Gilbert's test & Kalman's test for Observability,	500-502		How to apply the tests to evaluate Obserability	
	2.18	Duality Effect of state feedback on controllability and observability	504-509	https://www.youtube.com/ watch?v=BEngBq49Ibo	To understand the effect of State feedback	
	2.19	Problems				
	2.20	Problems				
			Unit I Com	pensation		
24	1.1	Introduction from Control System I	(T1) 207 – 221 244-264		To understand splane representation, Root Locus and Bode plot	
25	1.2	Need for compensation	320 - 328		To understand compensation and its need	
26	1.3	Performance Analysis of Lead Compensators in time & frequency domain, Bode Plots of Lead Compensators.	328 - 331	https://www.youtube.com/ watch?v=RCSsVQF5yg4	To understand general form of Lead Compensator and its realization using Electrical Network,Bode plot	
27	1.4	Performance Analysis of Lag Compensators in time & frequency domain, Bode Plots of Lag Compensators.	331-332	https://www.youtube.com/ watch?v=RCSsVQF5yg4	To understand general form of Lag Compensator and its realization using Electrical Network,Bode plot	

	15		333-334	https://www.youtube.com/	To understand general form	
	1.5	Dorformonco		watch?v=RCSsVOF5vg4	of Lag Lead Compensator	
		Performance			and its realization using	
		Analysis of Lag-lead			Electrical Network.Bode	
20		Compensators in			plot	
20		time & frequency			piot	
		domain. Bode Plots				
		of Lag-lead				
		Componenters				
		compensators.				
			Unit III Opt	imal Control System		
	3 1	Performance Indices	222 - 226		To understand the	
	5.1	Terrormance mulces	225 - 220		concept of PI	
		Parameter		http://youtu.be/THUQ-	To learn parameter	
	3.2	Optimisation without	665-666	avgBjM	optimization without	
		Contraints			narameter	
	3.3	Problems				
				http://woutu.be/THIIO	To loom nonomoton	
		Parameter	670 674	augRiM	ro learn parameter	
30	3.4	Optimisation without	670-671	avgbjm	optimization with	
		Contraints			parameter	
	3.5	Problems				
			Unit VI Digital (Control System		
	6.1	Representation	385-386	https://www.youtube.c	To understand basics of	
31		SDCS. Sampler &		om/watch?v=e9OEp5IIA	SDCS	
		Hold circuit				
	6.2	Charanta Complian	297 200	40	To understand the theorem	
32	0.2	Shahon's Sampling	387-390		To understand the theorem	
		theorem				
33	6.3		393-402		To understand about Z	
55		Z-Transform			transform and its application	
	6.4	Inverse Z-Transform	407-410		To understand about	
		and			Inverse Z transform and its	
34		solution of			application	
		Differencial				
		Equations				
	6.5		173 171		To study 7' & 'S' domain	
35	0.5		423-424		relationship	
		relationship				
	6.6	Stability by Bi-linear	424-431		To learn the stability	
36		transformation &			analysis	
		Jury's test.				
	6.7	Controllability and	522	https://www.youtube.c	To study for Discrete time	
		Observability of		om/watch?v=bnkwDii4K	system	

		Discrete time		Nw		
		systems.				
	6.8	revision				

Total number of lectures as per syllabus: - 48

Total number of lectures as per planned: -

	Tutorial F	Plan		
Week	Торіс		No. Of Problems	Mapped With CO
	State Space reprepresentation, Diagonalisation, Solution of State Equation, Controllability, Observability	of	04	
	PID Controller		01	
	Nonlinear Control System		05	
	Optimal Control System		02	
	Digital Control System		01	
	Assignment	t Plan		
Assignment No.	Торіс	Given Date	Submission Date	Mapped With CO
1	Tuning of PID Controller	30/03/2	2 05/04/22	
2				
	Content Beyond Syllabu	ıs Topic –	Planned	

Sr. No.	Content Beyond Syllabus Topic	Date Given	Mapped with CO's not covered in TP
1	Individual effect of P.I,D,PD and PID Controller	30/03/22	
2			

Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year
T1	Control System Engineering	Nagrath & Gopal New Age International	New Age International	
R1	Modern Control System Engg	K. Ogata	Prentice Hall, India	

Company/Industry:

Code	Company/Industry Name	Website	Detailed Information
C1	Liberatherm Instruments	www.temraturecontrol.co.i	Mumbai, India
	PVT. LTD	n	
C2	A.S.Automation &	www.asautomationpune.c	Pune, India
	Controls	om	
C3			

Research Paper:

Code	Title of the Paper	First Author Name	Journal/Conference Name	DOI no.	Issue/Volu me/Page no/Year
P1	An Introduction to control system - Semantic Scholar	Article	http://www.ent.mrt.ac.lk/~rohan/teachin g/EN5001/Reading/DORFCH1.pdf		
P2					

JAIDEV EDUCATION SOCIETY'S J D COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Website: www.jdcoem.ac.in E-mail: info@jdcoem.ac.in

An Autonomous Institute, with NAAC "A" Grade **Department Of Electrical Engineering** *"Igniting minds to illuminate the world"* 2021-22 (Odd Sem)

<u>VISION</u>	<u>MISSION</u>
"To develop competent and committed Electrical Engineers to serve the society"	 To impart quality education in the field of Electrical Engineering. To be excellent learning center through research and industry interaction.

		8	
Course	: B. Tech in Electrical Engineering	Year/Semester	: 7 th Semester (4rd Year)
Name of the Teacher	: Mr.Mandar S. Isasare	Subject Code	: BTEEC702
Subject	: High Voltage Engineering	Section	: A
Periods per Week (eac	h 45 min)	Lecture	3
		Tutorial	-
		Practical	2
Subject Periods per Week (eac	: High Voltage Engineering h 45 min)	Section Lecture Tutorial Practical	: A 3 - 2

Course Objective	Course Outcomes
1. To study conduction and breakdown in gases, liquids and solids.	1. Illustrate the concept of electric field stresses, applications of
2. To understand the methods and measurement of high voltage	insulating materials and methods for Non-destructive testing of
generation and measurement	equipment like transformers, insulators, isolators, bushings, lightning
3. To explain the lightening phenomenon and insulation co-	arrestors, cables, circuit breakers and surge diverters.
ordination.	2. Explain the breakdown process in solid, liquid, and gaseous materials
4. To know different non-destructive testing and standards in HV.	3. Analyze methods for generation and measurement of High Voltages
	and Currents (both ac and dc)
	4. Describe the phenomenon of over-voltage and choose appropriate
	insulation coordination levels based on IS & IEC Standards

Teaching Plan

Sr. No		Topic Code	Contents to be Covered	Planned Teaching Dates	Text Books Reference	URL's (NPTEL/OnlineMaterial/PPt/Video)	Applications (R&D/ Industry)	Learning Outcomes	CO mapping
					Book (Page no)				
	I	1		UNIT I:]	INTRODU	TION TO HIGH VOLTAGE E	- NGINEERIN	G	
1	1	1.1	Electric Field Stresses,Poisson's equation, Estimation and Control of Electric Stress			https://www.slideshare.net/moha mmedalmatri7/streamer-theory https://nptel.ac.in/courses/108104 048/10 https://www.youtube.com/watch? v=wo7XDN2A8KE		Student will be able to learn basics of high voltage engineering.	CO1
2	2	1.2	Surge Voltages, their distribution and control.			https://www.slideshare.net/moha mmedalmatri7/streamer-theory https://nptel.ac.in/courses/108104 048/10 https://www.youtube.com/watch? v=wo7XDN2A8KE		Student will be able to learn basics of high voltage engineering.	CO1
				UN	IT II:CON	DUCTION & BREAKDOWN IN	GASES	1	
3	3	2.1	Gases as insulation media, ionization processes			https://www.youtube.com/watch? v=2pLJ2ZX4By4 https://www.youtube.com/watch? v=POmmmCTQ4Xc https://id.elsevier.com/as/OVOFs/r esume/as/authorization.ping	C4	Student will be able to learn the electrical breakdown phenomenon in gases, and principles of application of these material in the design of high voltage insulation	CO2
4	4	2.2	Townsend's current growth equation, current growth in presence of secondary processes			https://www.youtube.com/watch? v=2pLJ2ZX4By4 https://www.youtube.com/watch? v=POmmmCTQ4Xc https://id.elsevier.com/as/OVOFs/r esume/as/authorization.ping	C4	Student will be able to learn the electrical breakdown phenomenon in gases, and principles of application of these material in the design of high voltage insulation	CO2
5	5	2.3	Townsend's criterion for		T1 22-27,	http://www.vssut.ac.in/lecture_note	C4	Student will be able	

			B.D. Break down in electro-negative gases, Time-lag for B.D.;	37	<u>s/lecture1423723357.pdf</u> <u>https://www.youtube.com/watch?v</u> <u>=-mPWa0F-L44</u>		to learn the electrical breakdown phenomenon in gases, and principles of application of these material in the design of high voltage insulation	
6	6	2.4	Streamer theory for B.D in gases, Paschen's law;	T127-38	https://www.slideshare.net/moham medalmatri7/streamer-theory https://nptel.ac.in/courses/10810404 8/10 https://www.youtube.com/watch?v =wo7XDN2A8KE	C4	Student will be able to learn the electrical breakdown phenomenon in gases, and principles of application of these material in the design of high voltage insulation	CO2
7	7	2.5	B.D in non-uniform field. Corona discharges corona under positive & negative polarities,	T134-36	https://www.youtube.com/watch?v =2pLJ2ZX4By4 https://www.youtube.com/watch?v =POmmmCTQ4Xc https://id.elsevier.com/as/OVOFs/re sume/as/authorization.ping	C4	Student will be able to learn the electrical breakdown phenomenon in gases, and principles of application of these material in the design of high voltage insulation	CO2
8	8	2.6	Glow & arc discharge, Considerations in using gases for insulation purpose.	T137-38, 68	https://www.sciencedirect.com/topi cs/engineering/vacuum-insulation- panel https://www.va-q- tec.com/en/technology/vacuum- insulation-panels/	C4	Student will be able to learn the electrical breakdown phenomenon in gases and principles of application of these material in the design of high voltage insulation	CO2
			<u> </u>	JNIT III: BRE	AKDOWN IN DIELECTRIC MA	TERIALS	-	•
9	9	3.1	Conduction & breakdown in liquid dielectrics: Pure and commercial liquids, breakdown in pure and	T138-44	https://slideplayer.com/slide/49005 33/ https://www.quora.com/What-is-a- liquid-insulator-in-electricity	C4	Student will be able to learn the electrical breakdown phenomenon in liquids and principles	СО

			commercial liquids				of application of these material in the design of high voltage insulation
10	10	3.2	theories of breakdown in liquids		https://www.chegg.com/homework- help/definitions/traveling-waves- on-transmission-lines-4 https://www.youtube.com/watch?v =eu1PC4botbM		
11	11	3.3	Breakdown in solid dielectrics Intrinsic, electromechanical &.thermal B.D.,	T1 51-59	http://www.eeeguide.com/intrinsic- breakdown/ https://www.youtube.com/watch?v =az5jDjbDDdA	C4	Student will be ableto learn the electricalbreakdownphenomenon in soliddielectric andprinciples ofapplication of thesematerial in the designof high voltageinsulation
12	12	3.4	chemical, electrochemical deterioration,		https://www.chegg.com/homework- help/definitions/traveling-waves- on-transmission-lines-4 https://www.youtube.com/watch?v =eu1PC4botbM		Student will be ableto learn the electricalbreakdownphenomenon inliquids and principlesof application of thesematerial in the designof high voltageinsulation
13	13	3.5	treeing, tracking, internal discharges,		https://www.chegg.com/homework- help/definitions/traveling-waves- on-transmission-lines-4 https://www.youtube.com/watch?v =eu1PC4botbM		Student will be able to learn the electrical breakdown phenomenon in liquids and principles of application of these material in the design of high voltage insulation

14	14	3.6	B.D. in composite dielectrics.		T1 50-59	https://youtu.be/Yls3- <u>NOuxnw?list=PL-</u> <u>hzttBtzjbhijT8z0mk4NaOEfDAz4R9</u>	C4	Student will be able to learn the electrical breakdown phenomenon in solid, liquid and gaseous dielectric and principles of application of these material in the design of high voltage
15	15	3.7	properties of solid insulators & other materials used in practice.			https://www.chegg.com/homework- help/definitions/traveling-waves- on-transmission-lines-4 https://www.youtube.com/watch?v =eu1PC4botbM		Student will be able to learn the electrical breakdown phenomenon in liquids and principles of application of these material in the design of high voltage insulation
16	16	3.8	Insulating materials: In power transformers, rotating machines, circuit breakers, cables, power capacitors & other equipment			https://www.chegg.com/homework- help/definitions/traveling-waves- on-transmission-lines-4 https://www.youtube.com/watch?v =eu1PC4botbM		Student will be able to learn the electrical breakdown phenomenon in liquids and principles of application of these material in the design of high voltage insulation
			U	NIT IV: OV	ER VOL	TAGE DUE TO LIGHTENING	PHENOMEN	ON:
17	17	4.1	Natural causes for over voltages – Lightning phenomenon,			https://www.youtube.com/watch?v =C3y289F1eQ4 https://circuitglobe.com/lightning- stroke.html		Students will be able to design a simple protection system for a section of power system, such as a feeder, a transformer or a motor.

18	18	4.2	Overvoltage due to switching surges, system faults and other abnormal conditions,		https://slideplayer.com/slide/49005 33/ https://www.quora.com/What-is-a- liquid-insulator-in-electricity	Students will be able to design a simple protection system for a section of power system, such as a feeder, a transformer or a motor.
19	19	4.3	propagation of lightning voltage & current waves on transmission lines,	T1 231- 240	https://www.chegg.com/homework- help/definitions/traveling-waves- on-transmission-lines-4 https://www.youtube.com/watch?v =eu1PC4botbM	Students will be able to learn Insulation coordination and calculations for the design of simple high voltage insulation system
20	20	4.4	reflection & transmission of traveling wave at junction		https://www.geneseo.edu/~mclean/s imulations/traveling/ReflandTx.pdf https://www.youtube.com/watch?v =rr2auVyFFE8	Students will be able to design a simple protection system for a section of power system, such as a feeder, a transformer or a motor.
21	21	4.5	system control of over voltage due to switching		https://rmd.ac.in/dept/eee/sp/7/PSG/ unit1.pdf https://www.electronicdesign.com/p ower/high-side-switch-provides- overvoltage-protection-only-four- components	Students will be able to design a simple protection system for a section of power system, such as a feeder, a transformer or a motor.
22	22	4.6	protection of transmission lines against over voltage.		https://circuitglobe.com/lightning- arrester.html https://www.berkeys.com/2016/11/ 18/surge-arrester-works/	Students will be able to design a simple protection system for a section of power system, such as a feeder, a transformer or a motor.

23	23	4.7	Insulation coordination, surge diverters,		T1 257- 263	https://www.electrical4u.com/insula tion-coordination-in-power-system/ https://nptel.ac.in/courses/10810809 9/3	C4	Students will be able to learn Insulation coordination and calculations for the design of simple high voltage insulation system	
24	24	4.8	equipment insulation level & co-ordination of substations			https://www.electrical4u.com/insula tion-coordination-in-power-system/ https://nptel.ac.in/courses/10810809 9/3		Students will be able to design a simple protection system for a section of power system, such as a feeder, a transformer or a motor.	
		-	UNIT V:	GENERA	TION & N	MEASUREMENT OF HIGH VOI	LTAGES & C	URRENTS	
25	25	5.1	Generation of a) high d. c voltage b) power frequency high alternating voltage, ,		T1 79, 86	https://www.youtube.com/watch?v =DI8Yt1AQrH8	C1	Students will be able to learn the principles behind generating high DC, AC and impulse voltages and also different methods of generation of high voltage and currents in laboratory	
26	26	5.2	c) high frequency a. c. d) impulse voltages			https://nptel.ac.in/courses/10810404 8/24 https://slideplayer.com/slide/10496 818/	Cl	Students will be able to learn the principles behind generating high DC, AC and impulse voltages and also different methods of generation of high voltage and currents in laboratory	
27	27	5.3	Standard impulse waves shapes and it's equation,			https://nptel.ac.in/courses/10810404 8/28 http://www.eeeguide.com/standard-	C1	Students will be able to learn the principles behind generating	

					impulse-wave-shapes/		high DC. AC and	
					<u>+</u>		impulse voltages and	
							also different methods	
							of generation of high	
							voltage and currents in	
							laboratory	
28	28	5.4	multistaga impulsa		https://www.broinkort.com/orticle/T	C1	Students will be able	
20	20	5.4	apparator matrix		ripping and Control Of Impulse		to learn the principles	
					Comparison 12008/		habind concerting	
			circuit		Generators 12908/		benning generating	
							nigh DC, AC and	
							impulse voltages and	
							also different methods	
							of generation of high	
							voltage and currents in	
							laboratory	
29	29	5.5	generation of		https://www.youtube.com/watch?v	C1	Students will be able	
			switching surges,		<u>=5Ba4ml-015o</u>		to learn the principles	
			tripping & control of		https://www.brainkart.com/article/T		behind generating	
			impulse generators,		ripping-and-Control-Of-Impulse-		high DC, AC and	
					Generators 12908/		impulse voltages and	
					_		also different methods	
							of generation of high	
							voltage and currents in	
							laboratory	
30	30	5.6	generation of impulse	T1 120-	https://www.youtube.com/watch?y	C1	Students will be able	
			currents	121	=5Ba4ml-015o		to learn the principles	
							behind generating	
							high DC AC and	
							impulse voltages and	
							also different methods	
							of generation of high	
							voltage and currents in	
21	21	57				C2		
51	51	5.7	М			C2	Students Will be able	
			Neasurement of High		<u>nttps://www.slideshare.net/toucham</u>		to learn different	
			Direct Current		an/measurement-of-		methods of	
			voltages, Abraham		highvoltageandhighcurrentunitivfull		measurement of high	
			Voltmeter		version		voltage and currents in	
					https://slideplayer.com/slide/48817		laboratory and to	
					<u>06/</u>		select appropriate	
							hardware for certain	

							applications in power	
							system protection and	
							high voltage	
							engineering	
32	32	5.8	Measurement of High	T1 149	https://www.slideshare.net/VINEET	C2	Students will be able	
			Voltages alternating		HKUMARPK/10ee73-high-		to learn different	
			and impulse		voltage-engg-chapter-6-part-b-hv-		methods of	
					measurements		measurement of high	
					https://slideplayer.com/slide/57929		voltage and currents in	
					41/		laboratory and to	
							select appropriate	
							hardware for certain	
							applications in power	
							system protection and	
							high voltage	
							engineering	
33	33	5.9	Measurement of High	T1 159-	https://nptel.ac.in/courses/10810809	C2	Students will be able	
			Currents-direct,		<u>9/35</u>		to learn different	
			alternating and		http://vlabs.iitkgp.ac.in/vhvlab/html		methods of	
			Impulse,		/pages/HV&InsulationLectureNotes		measurement of high	
					/MeasHV.pdf		voltage and currents in	
							laboratory and to	
							select appropriate	
							hardware for certain	
							applications in power	
							system protection and	
							high voltage	
							engineering	
34	34	5.10	, Oscilloscope for		https://www.youtube.com/watch?v		Students will be able	
			impulse voltage and		<u>=5Ba4ml-015o</u>		to learn the principles	
			current measurements		https://www.brainkart.com/article/T		behind generating	
					ripping-and-Control-Of-Impulse-		high DC, AC and	
					Generators_12908/		impulse voltages and	
							also different methods	
							of generation of high	
							voltage and currents in	
							laboratory	
				UNIT V	I:NON DESTRUCTIVE TESTIN	G		
35	35	6.1	I.E.C. & IS codes for		https://nptel.ac.in/courses/108105		Students will be able	
			high voltage tests on		<u>104/17</u>		to learn Different	
			electrical appliances &				methods of non	

			power apparatus		http://www.cirprotec.com/Support /Knowledge-area/Transient-and- power-frequency-overvoltage- protection/POP/Power-frequency- overvoltages-POP	destructive and High Voltage testing of apparatus. and measurement	
36	36	6.2	I.E.C. & IS codes for high voltage tests on electrical motors		https://nptel.ac.in/courses/108105 104/17 http://www.cirprotec.com/Support /Knowledge-area/Transient-and- power-frequency-overvoltage- protection/POP/Power-frequency- overvoltages-POP	Students will be able to learn Different methods of non destructive and High Voltage testing of apparatus. and measurement	
37	37	6.3	Non- destructive testing, testing of insulators	T1 188	https://www.youtube.com/watch?v =aORHxq0feYo https://study.com/academy/lesson/h ow-to-measure-dc-resistivity.html	Students will be able to learn Different methods of non destructive and High Voltage testing of apparatus. and measurement	
38	38	6.4	Testing of bushings, circuit. breakers	T1 169- 178	http://www.electricalidea.com/testin g-of-insulator/ https://www.youtube.com/watch?v =6qf1D4ekk6A https://nptel.ac.in/courses/10810809 9/12	Students will be able to learn Different methods of non destructive and High Voltage testing of apparatus. and measurement	
39	39	6.5	Testing of Isolators, , cables, transformer	T1 169- 178	http://www.eeeguide.com/high- voltage-test-on-circuit-breaker-and- isolators/ https://www.youtube.com/watch?v =4L0ch0-Paq8 https://www.electrical4u.com/transf ormer-testing-type-test-and-routine- test-of-transformer/	Students will be able to learn Different methods of non destructive and High Voltage testing of apparatus. and measurement	
40	40	6.6	layout of high voltage laboratories & test		https://www.youtube.com/watch?v =5Ba4ml-0150	Students will be able to learn Different	

	facilities	https://www.brainkart.com/article/T ripping-and-Control-Of-Impulse- Generators 12908/	methods of non destructive and High Voltage testing of	
			apparatus. and measurement	

Total number of lectures as per syllabus: - 40

Total number of lectures as per planned: - 40

	Assignment	t Plan			
Assignment	Tonic	Given	Submission	Mapped	
No.	Горге	Date	Date	With CO	
1	Introduction to HVE/Breakdown mechanism in Gaseous Di-electric	01/10/2021	08/10/2021	1,2	
2	Breakdown In Dielectric Materials/ Over Voltage Due To Lightening Phenomenon	1/12/2021	06/12/2021	1,2	
	Content Beyond Syllabu	ıs Topic – Plar	ined		
Sr. No.	Content Beyond Syllabus Topic	Date Give	n Mapped wi	Mapped with CO's not covered in TP	
1	1 Breakdown mechanism in Vaccum Dielectric			1,2	

Text Books:

Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year
T1	High voltage engineering	C. L. Wadhwa	New Age International	2017
T2 High voltage engineering		M. S, Naidu and V. Kamaraju	TMG	

Reference Books:

Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year
R1	High Voltage Technology L.L. Alston Oxford University Press	First Indian	L.L. Alston Oxford University Press	
R2	High voltage engineering	C.L. Wadhwa	New Age International Publishers, Third Edition, 2010	

Company/Industry:

Code	Company/Industry Name	Website	Detailed Information	
C1	DNV GL	https://www.dnvgl.com	The KEMA High-Voltage Laboratory is a well-known independent laboratory for	
			testing and certification of medium and high voltage components used in the	
			electrical infrastructure.	
C2	Beijing Huatian	http://www.bhthv.com	BHT is a company subordinated to China Aerospace Science and Industry Corporation	
	Mechanical-Electrical		(CASIC) and a high and new technology enterprise, which is dedicated to the research,	
	Institute Co., Ltd. (BHT)		design and manufacturing of test and detection equipment in high-voltage industry.	
			The main products of the company include surge voltage generator complete test	
			equipment, surge current generator complete test equipment, high-voltage DC	
			generator complete test equipment, power frequency test equipment and transformer	
			comprehensive test station etc. as well as relevant computer control and measurement	
			instruments and meters of various high-voltage detection and test equipment.	
C3	North Star High Voltage	http://www.highvoltageprob	North Star High Voltage develops and manufactures high voltage probes which define	
		<u>es.com</u>	the state of the art in high voltage measurements. We also develop and manufacture	
			support circuits for closing tubes including Thyratrons and Ignitrons (Thyratron drivers	
			and Ignitron drivers).	
C4	Kumtek	www.kumtek.com	In 1989, Kumtek began the business with the purpose of selling non-asbestos high-	
			temperature resistant materials for local major industries in Taiwan. That is still one of	
			Kumtek's main focus today. They have continuously and consistently endeavored to	
			achieve our goal of being "One Stop for Customer's needs in the field of high-	
			temperature insulation protection materials and fabricated products.	
Research Paper:				

Issue/Volume/Pa Title of the Paper First Author Name Journal/Conference Name DOI no. Code ge no/Year IEEE Power Engineering Review https://doi.org/10.1109/ Volume: High Voltage Engineering and Testing H.M. Ryan P1 MPER.1995.365074 15, <u>Issue: 3</u>, March 1995)

Mr.

Mr.

Dr./Mr._____ Head of Department,_____

Subject Teacher

Academic Incharge