

JAIDEV EDUCATION SOCIETY'S J D COLLEGE OF ENGINEERING AND MANAGEMENT KATOL ROAD, NAGPUR Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere Website: www.jdcoem.ac.in E-mail: info@idcoem.ac.in An Autonomous Institute, with NAAC "A" GradeAffiliated to DBATU, RTMNU, MSBTE, MumbaiDepartment of Civil Engineering "Building Better Development"

Program: B. Tech in Civil Engineering

Course Structure & Evaluation Scheme

	VI Semester										
Sr.	Category of	Course	Course Name	Teaching Scheme		Evaluation Scheme				Credit	
No. Su	Subject	Code			Т	Р	CA	MSE	ESE/Ext. Pra.	Total	
1	PCC	CE6T001	Design of Steel Structures	2	1	0	20	20	60	100	3
2	PCC	CE6T002	Environmental Engineering	3	0	0	20	20	60	100	3
3	PEC	CE5TE01	Professional Elective I	3	0	0	20	20	60	100	3
4	PEC	CE6TE02	Professional Elective-II	3	0	0	20	20	60	100	3
5	OEC	CEOEC2	Open Elective-II	4	0	0	20	20	60	100	4
6	PCC	CE6L001	Design of Steel Structures Lab	0	0	2	60	0	40	100	1
7	PCC	CE6L002	Environmental Engineering Lab	0	0	2	60	0	40	100	1
8	PROJECT	CE6P003	Mini Project & Seminar	0	0	2	30	0	20	50	1
9		CE6P004	Campus Recruitment Training (CRT)	0	0	2	50	0	0	50	1
		CE6P005	Skill Development	0	0	2	15	0	35	50	1
10	MC	CE6T004	Research Methodology	2	0	0	10	15	25	50	AU
				17	1	10					21

VI SEMESTER

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6T001	Design of Steel Structures	2	1	0	3

	Prerequisites for the course
1	Stress-Strain Curve of Mild Steel
2	Moment of Inertia
3	Euler's Buckling Theory

	Prior Reading Material/useful links			
1.	http://www.engineeringcorecourses.com/solidmechanics2/C5-buckling/C5.1-eulers-			
	buckling-formula/theory/			
2.	https://www.eigenplus.com/the-stress-strain-curve-of-the-mild-steel/			
3.	https://www.toppr.com/guides/physics/system-of-particles-and-rotational-			
	dynamics/moment-of-inertia/			

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Understand the fundamentals of steel structures, fasteners and connections, concept of balanced section, under reinforced and overreinforced section.
2	CO2	Explain Plastic theory, Plastic hinge concept, Plastic collapse load, Types of tension members, behavior of tension members.
3	CO3	Apply knowledge of Welding, Types and Properties of Welds, Typesof joints, Weld symbols, Weld specifications, Effective areas of welds, Design of welds.
4	CO4	Analyze the tension and compression members, Elastic buckling of slender compression members, Sections used for compressionmembers.
5	CO5	Solve numerical on simple slab base and gusseted bases Beamtypes, simple and built-up beams in bending (without vertical stiffeners).
6	CO6	Build steel structure elements with Limit State Method of design, by using Codes, Specifications and section classification.

Course Con	tent			
Unit I Introduction to Design of Steel Structures, Steel as a structural M grades of structural steel, various rolled steel sections and their proper Limit State Method of Design, Design considerations, Failure Criteria Steel. Introduction to I.S. 800, 808, 816, 875 etc. [04 hrs]				
Unit II Introduction to Connection, Behavior of bolted and welded connection (Types, Designations, Properties, Permissible Stresses), Design of bo welded Connections, Eccentric Connections, Efficiency of joints. Tension Members: Design Strengths, Design of Tension Members, D Gusset Plate. Lug Angles. Design of roof truss, Load assessment for DL, LL and WL. [08 hrs]				
Unit III	Compression Member: Modes of Failure of Column, Design of Compression Member. Design of single rolled steel section column subjected to axial load anduniaxial moment. Design of axially loaded built up columns: Laced and Battened. [10 hrs]			
Unit IV	Introduction to Flexural Member, Design of Laterally restrained and un- restrained beams (symmetrical as well as unsymmetrical section). Calculation of Plastic Section modulus. Design of Girder. [08 hrs]			
Unit V	Design of Column Bases: slab base and gusseted base subjected to axial and eccentrically loaded. [06 hrs]			

Text Books				
1	1 Design of Steel Structures (By Limit State Method as per IS: 800- 2007), by Bhavikatti, Publisher: IKBooks.			
2	Design of steel structures by N. Subramanian (Using IS: 800-2007) Publisher: Oxford University Press,India.			
3 Limit State Design of Steel Structures by S. K. Duggal Publisher: Tata McGraw Hill.				
4	Limit State Design of Steel Strucutres: Based on IS: 800-2007 by Dr. Ramchandra, Virendra GehlotScientific Publishers.			
5	Design of steel structures by K. S. Sairam Publisher: Pearson Education			
Reference Book:				
1	Design of steel structures by Willam T Segui, CENGAGE Learning			

Contribution for Syllabus Design:

Sr. No.	Name of Person	Designation	Organization
1	Dr. K. N. Kadam	Associate Professor	GCOE, Nagpur
2	Prof. Atika Ingole	Assistant Professor	JDCOEM, Nagpur
3	Prof. Shital Navghare	Assistant Professor	JDCOEM, Nagpur

Dean Academics

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6T002	Environmental Engineering	3	0	0	3

	Prerequisites for the course
1	Basics of Civil Engineering
2	Basic sciences such as chemistry, physics, and biology
3	Knowledge of engineering principles related to fluid mechanics and hydraulics
4	Familiarity with environmental laws and regulations related to water supply and
	wastewater treatment

	Prior Reading Material/useful link				
1.	https://www.youtube.com/watch?v=EOOFN9yKkoY				
2.	https://guide.berkeley.edu/graduate/degree-programs/civil- environmental-engineering/				
3.	https://www.youtube.com/watch?v=CTUOchYZG2k				

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Define the importance and necessity of water supply and waste water treatment scheme.
2	CO2	Understand the various unit operations and unit processes in water & waste water treatment andflow sheet of conventional municipal water & waste water treatment plant.
3	CO3	Compare various units of conventional water & waste water treatment plant.
4	CO4	Apply advance treatment process to treat water and waste water.
5	CO5	Estimate an ecofriendly system for reuse and recycling of waste water.
6	CO6	Design and develop safe, effective and efficient water supply and waste water disposal system.

Course Con	tent		
	Introduction: Importance and need of planned water supply scheme, various components		
	of water supply scheme.		
	Water Demand: Types of demand, factors affecting per capita demand, variation in		
Unit I	demand, losses, design period and population forecasting methods. Sources of Water:		
Unit I	Various sources of surface water and groundwater for water supply scheme including		
	various intake structures.		
	Water quality: Physical, Chemical and bacteriological characteristics of water.		
	Treatment of Water		
	Types of Treatments: Aeration: Necessity, methods, removal of taste and odour, design		
	of aeration fountain.		
	Sedimentation: Suspended Solids, settling velocity, types of sedimentation tanks, surface		
Unit II	loading, detention time, inlet and outlet arrangements, Design of Sedimentation tank.		
	Filtration: Theory of filtration, filter materials, types of filters, components, working and		
	cleaning of filters.		
	Disinfection: Theory of disinfection, factors affecting, efficiency of		
	disinfection, types of disinfectants.		
11 ·/ 111	System of Water Supply Continuous and intermittent system, type of distribution		
Unit III systems, layouts, methods of supply: gravity, pumping and combination hydraulic analysis of distribution system			
	General Aspects of waste water treatment & Disposal Necessity of treatment		
	classification of waste water, grey water and black water: system of sanitation patterns		
	of sewage collection systems. Estimation of storm water and sanitary waste water.		
Unit IV	Disposal of waste water: Disposal standards, disposal by dilution, disposal by land		
	treatment along with their advantages and disadvantages		
	Conveyance of sewage: Types, shapes, hydraulic design of sewer.		
	Wastewater treatment Process		
Linit M	Wastewater treatment flow sheet and its site selection, preliminary and primary		
Unit V	treatment - Screens, Grit chambers, Primary Settling Tank, Design of Conventional		
	waste water treatment plant.		

Text Books:	
1	Water supply & Sanitary Engineering Vol. I : B. C. Punmia (Laxmi Publication)
2	Water supply & Sanitary Engineering : G. S. Birdie (Dhanpat Rai Publication)
3	B.C. Punmia, "Waste Water Engineering" - Laxmi Publication
4	G.S. Birdie, "Water Supply & Sanitary Engineering" - Dhanpat Rai Publ.Company (P)
	Ltd.
	Reference Book:
1	S. K. Garg "Environmental Engineering Vol-II (Khanna Publication)
2	CPHEEO manual on sewerage and sewage treatment. Metcalf and Eddy"waste water
	treatment

Sr. No.	Name of Person	Designation	Organization	Signature
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur	
2	Prof. Atika Ingole	Asst. Professor	JDCOEM, Nagpur	
3	Prof. Nilesh Pal	Asst. Professor	JDCOEM, Nagpur	

Professional Elective I

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE01A	Urban Transportation Systems Planning	3	0	0	3

	Prerequisites for the course
1	Basic knowledge of urbanization and urban areas, including urban design and
	classification of urban roads.
2	Understanding of transportation systems and modes, such as road transport, rail
	transport, and public transport.
3	Knowledge of the impact of transportation on the environment and sustainable
	transportation concepts.
4	Familiarity with data collection and analysis methods, including surveys and
	environmental impact analysis.

	Prior Reading Material/useful link
1.	https://www.unfpa.org/resources/classification-and-delineation-urban-areas-census
2.	https://www.preventionweb.net/understanding-disaster-risk/risk-drivers/poorly-
	planned-urban-development
3.	https://www.nrel.gov/transportation/sustainable-mobility-initiative.html

Sr.	Course	Course Outcome Statement			
No.	Outcome				
	number				
1	CO1	Remember the issues & challenges in the Urban Transportation Sector.			
2	CO2	Explain the characteristic of urban transportation, structure of urban transportation and classification of urban roads.			
3	CO3	Develop skills required for Transport planning & formulation.			
4	CO4	Analyze the processes for Transport project execution and control.			
5	CO5	Choose the contracting process as applied in Urban Transport projects.			
6	CO6	Elaborate the use of intelligent Transport System and need to accommodate non-motorized transports			

Course Con	tent			
Unit I	Urbanization and Transportation: Importance of urban area, Structure of urban area, urban design, use of roadspace, classification of urban roads.			
Unit II	Urban Transportation Characteristics: Factors influencing transportation needs, transportation demand, type of trips,mode of travel, urban transportation scene in India. Road congestion, impact of transport on environment.			
Unit III	Urban Transportation Planning Process: Urban transportation planning objectives, urban transportation system, urban transportation planning process, data collection, surveys for data collection, environmental impact analysis.			
Unit IV	 Travel Demand Forecasting: Trip generation and attraction analysis, trip distribution models, model split analysis, route assignment analysis. Public Transportation: Bus transport characteristics, bus route planning, performance indicator, types of rail transit, rail transit system development in Indian cities, Integrated Transport System, Modes of Integrated transport systems 			
Unit V	Innovations in Urban Transportation: Need for innovative approaches, track guided bus, BRT, GIS, ITS, functional areas of ITS. Non-motorized Urban Transportation : Importance of pedestrian facilities, sidewalks, PUP & POB, bicycle facility planning, types of bicycle facilities, bicycle network planning, bicycle parking, cycle - rickshaws.			

Text Books:	
1	Traffic Engineering and Transport Planning: L R Kadiyali, Khanna Publishers
2	Urban Transportation: D. J. Victor & S. Ponnuswamy, Tata McGraw – Hill
Reference B	ook:
1	Transport Planning and Traffic Engineering: C A O' Flaherty, BUTTER WORTH- HEINEMANN
2	Urban Development and Sustainable Transport P. Anbalagan, Bookwell Publications
3	Urban Transportation Planning 2nd Edition by Michael Meyer, Eric Miller, McGraw - Hill

Sr. No.	Name of Person	Designation	Organization
1	Dr. K. N. Kadam	Associate Professor	GCOE, Nagpur
2	Prof. Shital Navghare	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE01B	Building Construction Practices	3	0	0	3

	Prerequisites for the course
1	Basics of Civil Engineering
2	Understanding of civil engineering, including knowledge of construction materials and their properties, as well as the principles of building construction and design.
3	Understanding of mathematics and physics, including mechanics and structural analysis
4	Knowledge of the relevant Indian Standard Codes (IS codes) related to building construction

	Prior Reading Material/useful link
1.	https://www.twi-global.com/technical-knowledge/faqs/structural-engineering
2.	https://structuralengineeringbasics.com/what-types-of-construction-building- materials/
3.	https://www.youtube.com/watch?v=R2dNp5tLni0

Sr.	Course	Course Outcome Statement	
No.	Outcome		
	number		
1	COI	Acquire the knowledge about building construction, stone work,	
1	COI	brick work, timbering, floors andbrick.	
2	CON	Understand the basic components of building and fundamental	
2	02	parameters in stonework, brickworkand timbering.	
3	CO3	Utilize the knowledge on the site during building construction.	
4	C04	Distinguish the properties different materials used in building	
-	04	construction.	
5	COS	Choose the material and method of work for the appropriate	
5	005	construction of building.	
6	CO6	Construct the building using the knowledge gained.	

	Course Content
Unit I	Building: Building components and its classification to NBC-2005. Foundations: Necessity and types of foundations. Details shallow foundations, Introduction to deep foundation. Loads on foundations, Causes of failures of foundations and remedial measures, Foundation on black cotton soil, Foundation trenches, excavation timbering of foundation trenches, Load bearing and framed structures, Simple numerical on design of footing for load bearing structures. [08 hrs]
Unit II	Stone Work: Stones, cutting and dressing, selection of stones types of stone masonry, principles of construction, and joints in masonry. Lifting heavy stones, common building stones in India, artificial building stones, uses and application of stones, stone cladding Pointing: Necessity and types of pointing Arches and Lintels: Terminology in construction of arches and types, types chajjas and canopies. Pre cast lintels& Arches. Plastering: Necessity, types and its procedure of construction. [08 hrs]
Unit III	Brickwork: Qualities of good bricks, classification of bricks tests on bricks as per IS codes. Terms used in brickwork, commonly used types of bonds in brickwork (one brick thick only) such as header, stretcher, English and Flemish bonds, principles of construction, reinforced brickwork, brick knogging, Parapets, copings, sills and corbels, brief introduction to cavity walls, loadbearing and partition walls. Masonry construction using cement concrete blocks, perforated bricks, paving, hollow blocks, fire clay bricks, AAC block. Precast construction: introduction, advantages and comparison with conventional construction methods. [08 hrs]
Unit IV	Timbering: Centering and formwork shoring, underpinning, and scaffolding. Timber: Classification, structural, characteristics, defects and prevention. Painting: White washing, color washing and distempering new materials& Techniques. Damp Proofing: Causes and effect of dampness. Various methods of damp proofing, Damp proofing of plinth Heat and sound insulation [08 hrs]
Unit V	Floors: General principles, types and method of construction upper floors finishes quality and testing floor tiles, synthetic & Ceramic Tiles. New techniques and materials used for flooring. Manufacturing of vitrified tiles Roofs: Flat and pitches roofs, roof coverings types and their constructional features, Thermal Insulation, Innovative roofing material used Ex. FRP Stairs: Types of stairs, functional design of stairs. Introduction of Lift and Escalators Doors and Windows: Purpose materials of construction and types. [08 hrs]

Text Books:		
1	Building Construction: B. C. Punmia, Laxmi publication Pvt.	
1	Ltd. New Delhi and distributor, 1984 &later 2008.	
2	Building construction by Sushil Kumar, 16th Edition, Standard Publishers	
2	Distributors, 2006.	
2	Building Construction Material by S.K. Duggal, 4th edition, New Age	
5	International, Reprint Nov.2014.	
Reference Book:		
1	Building Construction and Materials by Singh Gurcharan, Standard Publisher	
1	and Distributor, StandardPublishers Distributors, 2003.	

2	Alternative building Materials and Technologies: K. S. Jagdish& B. V.
2	Venkatarama Reddy, New ageinternational Publishers, 2007.

Sr. No.	Name of Person	Designation	Organization	
1	Dr. P. D. Pachpor	Professor	RCOE, Nagpur	
2	Prof. Atika Ingole	Asst. Professor	JDCOEM, Nagpur	
3	Prof. Nilesh Pal	Asst. Professor	JDCOEM, Nagpur	

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE01C	Rural Water Supply and Onsite	3	0	0	3
		Sanitation Systems				

	Prerequisites for the course		
1	Basic knowledge of water supply and sanitation systems, their components, and their		
	functions.		
2	Understanding of rural communities, their lifestyles, and their specific needs for		
	water supply and sanitation.		
3	Knowledge of the importance of environmental protection, pollution control, and		
	sustainable development.		
4	Basic knowledge of chemical properties of water and pollutants, chemical reactions,		
	and chemical treatment processes.		

	Prior Reading Material/useful link
1.	https://www.coursera.org/lecture/engineering-humanitarian/introduction-to-water-
	supply-systems-wQrM2
2.	https://www.smsfoundation.org/wastewater-management-in-rural-india/
3.	https://www.youtube.com/watch?v=57RkhH4KkAU

Sr.	Course	Course Outcome Statement	
No.	Outcome		
	number		
1	CO1	Know the problems pertaining to rural water supply and sanitation.	
2	CO2	Understand the engineering knowledge and principals of appropriate technology to develop cost effective technique for rural water supply and sanitation.	
3	CO3	Develop water supply and sanitation system for rural community.	
4	CO4	Discover low cost waste management systems for rural areas.	
5	CO5	Evaluate high quality solid waste composting system to convert solid waste into good quality manure.	
6	CO6	Plan and design an effluent and solid waste disposal mechanism.	

Course Con	Course Content		
Unit I	Concept of environmental & scope of sanitation in rural areas. Magnitude of problem of water supply and sanitation –population to be covered and difficulties National policy. Various approaches for planning of water supply systems in rural areas. Selection and development of preferred sources of water, springs, well sand in filtration galleries, collection of raw water from surface source. [06 hrs]		
Unit II	Specific problem in rural water supply and treatment e.g.iron, manganese, fluorides etc. Low cost treatment, appropriate technology for water supply and sanitation. Improvised method and compact system of treatment of surface and ground water such as MB settlers, slow and sand filter, chlorine diffusion cartridge etc. Water supply through spot sources, hand pumps, open dug–well. [06 hrs]		
Unit III	Planning of distribution system in rural areas. Water supply during fairs, festivals and emergencies. Treatment and disposal of waste water/sewage. Various method of collection and disposal of night soil. [06 hrs]		
Unit IV	On site sanitation system and community latrines. Simple waste water treatment system for rural areas and small communities such as stabilization ponds, septic tanks, soakage pits etc. [06 hrs]		
Unit V	Disposal of solids waste: composting, land filling. Biogas plants. [06 hrs]		

Text Books:		
1	Low cost onsite sanitation option, Hoffman &Heijno Occasional Nov.1981	
2	Rijswijk (the Haque). Wagner, E. G. and Lanoik, J. N. water supply for rural area sand smallcommunities, Geneva: W.H.O.1959.	
Reference B	Book:	
1 Manual of water supply and treatment, 3rd edition, CPHEEO, GOI, New delhi.		

Sr. No.	Name of Person	Designation	Organization
1	Dr. P. Y. Pawade	Professor	GHRCOE, Nagpur
2	Prof. Shital Navghare	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course		Т	Р	Credits
VI	CE6TE01D	Introduction to Earthquake	3	0	0	3
		Engineering				

	Prerequisites for the course
1.	Basic knowledge of physics and mechanics, including Newton's laws of motion,
	force, and energy.
2.	Understanding of structural analysis and design principles, particularly for reinforced
	concrete structures.
3.	Knowledge of geology and plate tectonics.
4.	Basic understanding of seismology and seismographs.

Prior R	Prior Reading Material/useful link		
1.	Basic of Civil (A Hand Book For Civil Engineering		
	Students)By R. Khan		
2.	https://www.youtube.com/watch?v=g550H4e5FCY		
3.	https://www.iare.ac.in/sites/default/files/RCSDD_PPT%20editing%20format.pdf		

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Define basics of introduction to earthquakes, behavior of plates, effects and importance of Earthquake Engineering
2	CO2	Demonstrate history of earthquakes in India and abroad, case studies of effects of earthquakes, causes and sources of earthquake damage.
3	CO3	Solve numerical of magnitude of earthquake, epicenter, epicenter distances, by using IS codes.
4	CO4	Analyze the behavior of load bearing structures, masonry structures behave under earthquake inseismic zoning of India (IS 1893:2002 Part I), irregularities in buildings.
5	CO5	Conclude the application of design method for earthquake resistance structures.
6	CO6	Adapt the preventive measures to avoid critical damages due to natural disasters.

Course Con	tent		
	Introduction to earthquakes : Geology of earth, configuration of tectonic plates		
	in a globe, behavior of plates, their motion and effects, causes of earthquake		
	and their characteristics, Earthquake parameters, magnitudes, intensity.		
I Latit I	Seismic waves, recording of earthquakes, analysis and interpretation of		
Unit I	earthquake data, determination of magnitude, location of epicenter, focal depth.		
	Seismic zoning maps of India. Response spectra. Strong motion		
	characteristics [08 hrs]		
	Earthquake effects on the structures, classification of loads, Seismic		
Unit II	damages during past earthquakes, effect of irregularities and building		
	architecture on the performance of RC structures [08 hrs]		
	Seismic methods of analysis, seismic design methods, Design of multi – story		
	RC structure foundation as per latest IS 1893 by Equivalent static lateral load		
Unit III	method and Response spectrum Method. Introduction to Time history method.		
	Concept of Capacity based design of soft story RC building,		
	concept of shear walls. Ductile detailing as per latest IS :13920 [08 hrs]		
	Seismic retrofitting, Source of weakness in RC framed building, Various		
Unit IV	retrofitting techniques, Conventional and non- conventional methods,		
	Comparative study of various methods and case studies. [08 hrs]		
	Base isolation for earthquake resistant design of structures:		
Unit V	Base isolation concept, isolation systems and their modeling; linear theory		
	of base isolation; stability of elastomeric bearings; codal provisions for seismic		
	isolation, practical applications. [08 hrs]		

Text Books:	
1	Agrawal & Shrikhande, "Design of Earthquake Resistant Structures", 3rdEdition, 2006, Prentice – Hall of India Pvt. Ltd.
	Jai Krishna, Chandrasekaran Brijesh Chandra, " Elements of Earthquake
2	Engineering", 2nd Edition, Standard Publishers Distributors, New Delhi 3.
2	Roberto Villaverde, "Fundamental Concepts of Earthquake Engineering",
	2009, CRC Press
	Asadour H. Hadjian, "Basic Elements of Earthquake Engineering", 2015, Wiley
Reference B	ook:
1	Clough R.W. and Penzien J., 'Dynamics of Structures', McGraw-Hill, 2 nd
1	edition, 1992.
	Newmark N.M. and Rosenblueth E., 'Fundamentals of Earthquake Engg.,'
	Prentice Hall, 1971.
	David Key, 'Earthquake Design Practice for Buildings', Thomas Telford,
	London, 1988.
	Ellis L. Krinitzsky, J.M. Gould and Peter H. Edinger, 'Fundamentals of
	Earthquake Resistant Construction', John Wiley, 1993.
	Blume J.A., Newmark N.M., Corning L.H., 'Design of Multi-storied
	Buildings for Earthquake groundmotions', Portland Cement Association,
	Chicago, 1701.

PankajAgarwal and Manish Shrikhande, 'Earthquake Resistant Design of Structures', PHI, 2008.
Proc. of World Conferences on Earthquake Engg., 1956-2008.8. I.S. Codes No. 1893, 4326, 13920 etc.

Sr. No.	Name of Person	Designation	Organization
1	Dr. P. Y. Pawade	Professor	GHRCOE, Nagpur
2	Prof. Shital Navghare	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE01E	Foundation Engineering	3	0	0	3

	Prerequisites for the course
1.	Basic knowledge of soil mechanics and geotechnical engineering principles.
2.	Understanding of the behavior of soil under different loads and stress conditions.
3.	Familiarity with the properties of different types of soils and their classification
	systems.
4.	Knowledge of the principles and methods of site investigation and soil exploration.

Prior Reading Material/useful link		
1. https://onlinecourses.nptel.ac.in/noc21_ce41/preview		
2.	https://www.youtube.com/watch?v=V1m3cB-Aqy8	
3.	https://www.youtube.com/watch?v=P0j_pt4BLS0	

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Predict soil behavior under the application of loads.
2	CO2	Describe and illustrate the soil properties by various field and lab analysis.
3	CO3	Calculate bearing capacity and depth of foundation for different field conditions.
4	CO4	Analysis of shallow and deep foundation and it's settlement.
5	CO5	Judge the concept of foundation for the different field conditions.
6	CO6	Develop the knowledge of foundation engineering for effective designing.

Course Content			
Unit I	General requirements to be satisfied for satisfactory performance of foundations, Soil exploration: Necessity, Planning, Exploration Methods, Soil Sampling Disturbed and undisturbed, Rock Drilling and Sampling, Core Barrels, Core Boxes, Core Recovery, Field Tests for Bearing Capacity evaluation, Test Procedure & Limitations [08 hrs]		
Unit II	Bearing capacity of soils: Terzaghi"s theory, its validity and limitations, bearing capacity factors, types of shear failure in foundation soil, effect of water tableon bearing capacity, correction factors for shape and depth of footings. Bearing capacity estimation from N-value, factors affecting bearing capacity, presumptive bearing capacity [08 hrs]		
Unit III	Settlement of shallow foundation: causes of settlement, elastic and consolidation settlement, differential settlement, control of excessive settlement. Proportioning of footings for equal settlement. Plate load test: Procedure, interpretation for bearing capacity and settlement prediction. [08 hrs]		
Unit IV	Guidelines for Weak and Compressible Soils, Expansive soil, Parameters of Expansive Soils, Collapsible Soils and Corrosive Soils, Causes of Moisture changes in Soils, Effects of Swelling on Buildings, Preventative, Measures for Expansive Soils, Modification of Expansive Soils, Design of Foundation on Swelling Soils, Ground Improvement Methods: for general considerations, forCohesive Soils, for Cohesion less Soils [08 hrs]		
Unit V	Pile Foundation: Classification of piles, constructional features of cast-in-situ and precast concrete piles. Pile driving methods, effect of the driving on ground. Load transfer mechanism of axially loaded piles. Pile capacity bystatic formula and dynamic formulae, pile load test and interpretation of data, group action in piles, spacing of piles in groups, group efficiency, overlapping of stresses. Settlement of pile group by simple approach, negative skin friction and its effect on pile capacity, general feature of underreamed piles. [08 hrs]		
Text Books:			
1	Kasamalkar, B.J., "Foundation Engineering", Pittsburgh vintage Grand Prix.		
2	Murthy V.N.S., "Soil Mechanics and Foundation Engineering", CRC Press 2002.		
3	Arora K.R., "Soil Mechanics and Foundation Engineering", Standard publication 2009		
4	Punmia B. C., "Soil Mechanics and Foundation Engineering", Laxmi publication.		
5	5 Nayak N.V., "Foundation Design Manual", DhanpatRai and Sons.		
Reference B	Reference Book:		
1	Brahma S.P., "Foundation Engineering", Tata McGraw-Hill 5th Edition.		
	Bowles J.E., "Foundation analysis & Design" McGraw-Hill Higher Education 5th edition		

Sr. No.	Name of Person	Designation	Organization
1	Dr. P. Y. Pawade	Professor	GHRCOE, Nagpur
2	Prof. Atul Gautam	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE01F	Irrigation Engineering	3	0	0	3

	Prerequisites for the course
1.	Knowledge of basic principles of fluid mechanics, mechanics of materials, and
	engineering mathematics
2.	Knowledge of soil mechanics and foundation engineering
3.	Basic knowledge of surveying and engineering drawing

Prior Reading Material/useful link		
1.	1. https://studentlesson.com/fluid-mechanics/	
2.	https://byjus.com/physics/fluid-dynamics/	
3.	https://www.youtube.com/watch?v=BzAeUZAmcXM	

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Acquire the knowledge about irrigation engineering.
2	CO2	Describe the different structures involved in irrigation projects
3	CO3	Compute the necessary data required to design the irrigation project.
4	CO4	Differentiate the hydraulic structures according to their functions and requirement.
5	CO5	Evaluate stability condition of Dam.
6	CO6	Design the hydraulic structures.

Course Con	tent
Unit I	Water Requirement of Crops: Suitability of soils for Irrigation, Standards of Irrigation water; PET-R method of crop water requirements; Depth & frequency of Irrigation; Relation between duty and delta; Factors affecting duty; Crop rotation; Methods of assessment of Irrigation water, Reservoir Capacity.
Unit II	Gravity Dam: Definition; forces acting on gravity dam; stability requirements; Theoretical & practical profile of gravity dam; Low & Highdam; Galleries. Earthen Dams: Types and component parts of earthen dams, seepage and drainage arrangements; Failure of earthen dams; Plotting of phreatic line for homogeneous earthen dams with horizontal filters; Stability checks.
Unit III	 Diversion Head Works : Component parts of diversion headworks; Causes of failure of weirs on permeable foundation; Bligh's Creep theory; Dr. Khosla's theory for design of weirs on permeable foundations. Canals: Canals In Alluvial Soils: Kennedy's silt theory, Lacey's silt theory, Lacey's Regime equation. Lined Canals: Design procedure, types of lining, relative merits and demerits of canal lining, Economics of canal lining
Unit IV	Canal Regulation Works: Theoretical aspects of location, objects, classification, components and schematic section of Head Regulator, Cross regulators, canal escapes, Canal falls and canal outlets. Cross Drainage Works: Theoretical aspects of location, objects, classification, components and schematic section of aqueducts, siphon aqueducts, super passage, canal siphon, inlets and level crossing
Unit V	Water Logging and Land Drainage: Causes, effects, preventive measures of water logging, Types of drains, Layout of tile drains system, flow of groundwater to drains. Soil Erosion: Causes, effects and control

Text Books:		
1	Varshney R. S., Gupta & Gupta, 1987, "Theory and Design of Irrigation	
1	Structures", Vol. I & II.	
2	Punamia B. C. Pandey B. B. and Lal, 1992, "Irrigation and Water	
2	Power Engineering", StandardPublishers, New Delhi.	
2	Garg S. K., 1976, "Irrigation Engineering & Hydraulic Structures", Khanna	
3	Publishers, N. Delhi.	
4	Priyani, 1982, "Irrigation and Water Power", Charotar Publishing House,	
	Anand.	
5	5 Bharat Singh,1979, "Irrigation", Nemchand Brothers, Roorkee	
Reference Book:		
1	Subramanya K., 1984, "Engineering Hydrology", Tata Mc-Graw Hill	
	Company Limited, N. Delhi.	

Sr. No.	Name of Person	Designation	Organization
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur
2	Prof. Atika Ingole	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur

Professional Elective-IISemesterCourse CodeName of CourseLTPCreditsVICE6TE02AGeometric Design of Highway3003

	Prerequisites for the course
1.	Basic knowledge of civil engineering principles and concepts.
2.	Understanding of road construction and design process.
3.	Familiarity with geometric principles and design factors related to roadways,
	including topography, traffic capacity, design vehicle, and environmental factors.

Prior Reading Material/useful link	
1. https://www.youtube.com/watch?v=mx2SNc6kBgw	
2.	https://www.youtube.com/watch?v=9WdVvDfWvhE
3.	https://slideplayer.com/slide/6973484/

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Define the elements of vertical alignment, including being able to design and set out vertical curves.
2	CO2	Demonstrate the geometric design controls and criteria.
3	CO3	Choose the elements of horizontal alignment, including being able to design and set out circularcurve elements and circular and transition curves.
4	CO4	Distinguish the geometrical designs of local roads and streets, collector roads and streets, rural andurban arterials, and freeways.
5	CO5	Evaluate the elements of cross-section elements of pavement
6	CO6	Design the geometric parameters of Highway.

Course Con	tent
	Introduction:
	Geometric Control factors like Topography, design speed, design vehicle,
Unit I	Traffic Capacity, volume, environment, and other factors as per IRC and
	AASHTO standards and specifications, PCU concept, factors controlling PCU
	for different design purpose [06 hrs]
	Cross Sectional Elements:
	Pavement surface characteristics, friction, skid resistance, pavement
	unevenness, light reflecting characteristics, camber, objectives, types of
Unit II	camber, methods of providing cambers in the field, problems, carriage way,
	kerb, median, shoulder, foot path, parking lanes, service roads, cycle tracks,
	Driveways, Right of way, Factors influencing right of way, Designof Road
	humps as per latest IRC provisions. [10 hrs]
	Horizontal Alignment:
	Definition, Checking the stability of vehicle, while moving on horizontal
	curve, Super elevation, Ruling minimum and maximum radius, Assumption,
Unit III	problems, method of providing super, elevation for different curves, Extra
	widening of pavement on curves, objectives, Mechanical widening,
	psychological widening, Transition curve, objectives, Ideal requirements,
	Types of transition curve, Method of evaluating length of transition curve,
	and problems on above [10 hrs]
	Sight Distance:
	Importance, types, Side distance at uncontrolled intersection, derivation
	factors affecting side distance IRC AASHTO standards problems on
Unit IV	above Vertical Alignment: Gradient Types of gradient Design criteria of
o int i v	summit and valley curve. Design of vertical curves based on SSD. OSD.
	Night visibility considerations, Design standards for hilly roads, problems on
	the above. [06 hrs]
	Intersection Design:
	Principle, At grade and Grade separated junctions, Types, channelization,
	Features of channelizing Island, median opening, Gap in median at junction.
	Rotary Intersection: Elements, Advantages, Disadvantages, Design guide
Unit V	lines, problem on the above, Grade separated intersection, Three legged inter
Unit V	section, Diamond inter change, Half clover leaf, cloverleaf, Advantages,
	Disadvantages only.
	Highway Drainage: Importance, sub surface drainage, surface drainage, Design
	of roadside drives, Hydrological, Hydraulic considerations and design of filter
	media, problems on above. [10 hrs]

Text Books:			
1	L.R. Kadyali& N.B Lal ,Principles and practices of Highway Engineering 2006		
2	Sharma S.K, Principles and Practices of Highway Engineering 2012		
Reference Book:			
1	O'Flaherty, A. Coleman, "Highways: the Location, Design, Construction and Maintenance of RoadPavements", 4th Ed., Elsevier 2006		

Sr. No.	Name of Person	Designation	Organization
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur
2	Prof. Shital Navaghre	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur
4	Prof. Tina Khandale	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE02B	Project Planning and Cost Analysis	3	0	0	3

Prerequisites for the course				
1	Basics of project management			
2	Principles of accounting and finance			
3	Organizational behavior and leadership			
4	Emerging technologies and automation in construction			

	Prior Reading Material/useful link				
1.	https://www.youtube.com/watch?v=wJ8HZ7hqUs8				
2.	https://www.youtube.com/watch?v=Hs-U3jAvqo4&list=PLyqSpQzTE6M- DlbYhV1psqEz8xlpbhTgs				
3.	https://www.youtube.com/watch?v=-				
	sLHfYnxh8s&list=PLbMVogVj5nJQYXoO3foSZ6CrU7aCCwTsb				
4.	https://www.youtube.com/watch?v=2B7DhQvL8kw&list=PLwdnzlV3ogoVGSUhjx				
	4VzW-dGz7DqQFoj				

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Acquire the fundamental knowledge in project planning.
2	CO2	Understand the process involved for project planning, modern
		construction techniques used forplanning.
3	CO3	Develop the planning including all the resources with safety measures.
4	CO4	Assume the required resources during planning for cost analysis of project.
5	CO5	Choose the method for project planning and resource allocation.
6	CO6	Apply the knowledge in the modern techniques used for planning.

Course Cont	tent
Unit I	Definition of Projects; Stages of project planning: pretender planning, pre- construction planning, detailed construction planning, role of client and contractor. Process of development of plans and schedules, work break-down structure, activity lists, assessment of work content, concept of productivities, estimating durations, sequence of activities, activity utility data; Techniquesof planning- Bar charts, Gantt Charts.
Unit II	Project organization, documentation and reporting systems. Control & monitoring. Temporary Structures in Construction; Construction Methods for various typesof Structures. Major Construction equipment; Automation & Roboticsin Construction; Modern Project management Systems; Advent of Lean Construction. Importance of Contracts Management; Planning and organizing construction site and resources, Documentation at site; Manpower: planning, organizing, staffing, motivation.
Unit III	Materials: concepts of planning, procurement and inventory control; Equipment: basic concepts of planning and organizing; Funds: cash flow, sources of funds; Histograms and S-Curves. Earned Value; Resource Scheduling- Bar chart, line of balance technique, resource constraints and conflicts; resource aggregation, allocation, smoothening and leveling. Common Good Practices in Construction
Unit IV	Basics of Modern project management systems such as Lean Construction; Use of Building Information Modelling (BIM) in project management; Quality control: concept of quality, quality of constructed structure, use of manuals and checklists for quality control, role of inspection, basics of statistical quality control. Safety, Health and Environment on project sites: accidents; their causes, effects and preventive measures, costs of accidents, occupational health problems in construction, organizing for safety and health.
Unit V	Cost Analysis: Introduction to the application of scientific principles to costs and estimates of costs in construction engineering; concepts and statistical measurements of the factors involved in direct costs, general overhead costs, cost markups and profits; and the fundamentals of cost recording for construction cost accounts and cost controls.

Text Books:	
1	Antill and Woodhead, "C.P.M. in Construction Practice", Wiley-Interscience4th edition 1990.
2	Taylor. G.A., "Management and Engineering Economics", Mc-Graw Hill 4th edition.
Reference B	look:
1	Roy Pilcher, "Principles of Construction Management" Mc-Graw Hill Higher Education 2rd revision.

Sr. No.	Name of Person	Designation	Organization		
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur		
2	Prof. Kamlesh Meshram	Assistant Professor	JDCOEM, Nagpur		
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur		
4	Prof. Tina Khandale	Assistant Professor	JDCOEM, Nagpur		

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE02C	Water and Air Quality Modeling	3	0	0	3

Prerequisites for the course		
1	Knowledge of Environmental Science and Ecology.	
2	Knowledge of Hydrology, Geology, and Meteorology.	
3	Understanding of Water and Air Pollution sources, types, and effects.	
4	Knowledge of Water and Air Quality standards and regulations.	

Prior Reading Material/useful link		
1.	https://study.com/academy/lesson/what-is-environmental-science-definition-and- scope-of-the-field.html	
2.	https://www.youtube.com/watch?v=G7CnE5NBxZs	
3.	https://www.vedantu.com/biology/pollution-of-air-and-water	

Sr.	Course	Course Outcome Statement		
No.	Outcome			
	number			
		Acquire scientific and technological understanding on the physico-		
1	CO1	chemical operations and processes used in the treatment of water and		
		wastewater.		
		Understand the water/wastewater characterization and the treatment		
2	CO2	units" monitoring required for their design, operation and control,		
		and acquiring the related monitoring and analysis skills.		
2	CO3	Plan control the routinely used physico-chemical water and		
5	COS	wastewater treatment units		
4	4 CO4 Analyze cost effective, high efficiency water and air quality mo			
5	CO5	Explain learning of the techniques employed in the monitoring of		
5	005	particulates and gaseous pollutants in ambient air and stack gas.		
6	CO6	Formulate the modelling of air quality through the use of different		
6		software"s.		

Course Content		
	Water Quality and Parameters:	
Unit I	Physical; chemical and biological water quality parameters; General parameters;	
	Biological water quality and fecal coliform count; Solids; Biodegradable and non-	
	biodegradable organic matter; Nutrients; Heavy metals; and pesticides and	
	recalcitrant/toxic organic compounds.	
	water Quality Monitoring: Surface, water and groundwater quality: Water quality standards and offluent	
Unit II	standards: Water quality criteria and guidelines: Classification of water bodies: water	
Onten	quality monitoring programs. Water sampling and analysis and usespecific water	
	quality index. techniques; Water quality index	
	Water Quality Modelling:	
	Introduction to water quality modelling; Modelling of Lakes and reservoirs; Rivers	
	and streams; and Groundwater modelling; Modelling for common water quality	
Unit III	parameters: DO; temperature; suspended solids; algae; nutrients; coliforms and	
	toxics; Calibration; validation and use of water quality models (DO-BOD models;	
	and sediments models)	
	Air Quality: Introduction:	
T T ' T T	Overview of current air quality trends and challenges; Basic concepts;	
Unit IV	applications and importance of air quality Monitoring; Iso-kinetic sampling;	
	Precision and accuracy of monitoring; Air Quality Guidelines and Standards.	
	Air Quality Modelling:	
	Basic Components of an Air Quality Simulation Model; Parameters of Air Pollution	
TT ·/ T7	Meteorology; Steady-state; Non-Steady-state and Grid Meteorological Modelling;	
Unit V	Dispersion and Receptor modelling techniques; Gaussian plume model; Pasquilli's stability classification. Modelling softwares; Validation of Models; Applications of	
	Modelling: Air Pollution Forecast Models	
	modening, and condition refects models.	

Text Books:		
1	Borrego C and Ana IM, Air Pollution Modelling and its Application; Springer(2008).	
2	Tiwary A and Colls J, Air Pollution: Measurement; Modelling and	
2	Mitigation; Spon Press (2002).	
Reference Book:		
1	Khare M, Air Pollution – Monitoring; Modelling; Health and Control; In Tech	
1	Publishers (2012).	

Sr. No.	Name of Person	Designation	Organization
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur
2	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur
3	Prof. Tina Khandale	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE02D	Design of Precast and Pre-stressed Elements	3	0	0	3

Prerequisites for the course		
1	Basic knowledge of reinforced concrete design and analysis.	
2	Understanding of structural analysis and mechanics of materials.	
3	Knowledge of concrete materials and properties.	
4	Familiarity with Indian Standard Codes for concrete design and construction.	

	Prior Reading Material/useful link		
1.	https://www.youtube.com/watch?v=lyg_a8NVEzY		
2.	https://www.youtube.com/watch?v=YjCW2at77-w		
3.	https://civilengineeronline.com/design/rcc.htm		

Sr.	Course	e Course Outcome Statement	
No.	Outcome		
	number		
1	CO1	Demonstrate the concepts & methods for pre-stressing systems for different materials principlesaccording codal provisions.	
2	2 CO2 Find stresses, losses in prestress, strength of prestressed structures		
3	3 CO3 Utilize stress distribution in anchorages, end block by limit state design.		
4 CO4 Interpret Principles of Precast and Pre-Engineered buildings.		Interpret Principles of Precast and Pre-Engineered buildings.	
5	CO5 Compare Economy of prefabrication coordination and planning		
6	CO6	Estimate strength of prestress structures Pre-Engineered buildings	

Course Content		
Unit I	Introduction to prestressed concrete, types of prestressing, Advantages and limitations of Prestressing, systems and devices, materials, Introduction tolosses in Prestress, IS1343 –2012 codal provisions. Prestressed concrete construction: Principle, methods, materials, Tools and equipment for the construction of prestressed structures.	
Unit II	Analysis of member for prestress and bending stresses at various stages; Pressure Line; Stress, strength and Load Balancing concepts; Losses in presstress; short term and long term deflections; flexural ,shear and torsional strength, Estimation of crack width. Fatigue and impact strength, resistance to fire and corrosion	
Unit III	Transfer of prestress in pretensioned and posttensioned members, stress distribution at end anchorages, anchorages and end block design; Limit state design criteria, design of pre and post tensioned girders; design of post tensioned one way and two way slabs.	
Unit IV	General Principles of Pre-Fabrication (Precast & Pre-Engineered Building), Comparison with monolithic construction, Types of Prefabrication, site and plant prefabrication	
Unit V	Economy of prefabrication, Modular coordination, Standardization, Planning for Components of prefabricated structures, Dis-unitining of structures	

Text Books:		
1	Shah M.G., Kale.C.M. RCC Theory and Design. Macmillan India Ltd. 1987.	
2	N. Krishnaraju; Prestressed Concrete, Tata McGraw Hill, (Third Edition)	
	198.	
2	M.S.Shetty, Concrete Technology, S.Chandand Company New Delhi,	
5	2005.	
4	Orchard D.F., Concrete Technology -Vol I., Applied Science Publishers	
4	(Fourth Edition) 1979.	
Reference Book:		
1	Neville A.M and J.J. Brook; Properties of Concrete, Addison Wesley	
1	1999.	
2	Lin T.Y,Burns N.H.; Design of prestressed concrete structures. John Wiley	
2	and sons. (ThirdEdition).1982.	
3	S. Ramamurtham Reinforced Concrete Design DhanpatRai Publications 2009	

Sr. No.	Name of Person	Designation	Organization
1	Dr. P. Y. Pawade	Professor	GHRCOE, Nagpur
2	Prof. Atul Gautam	Assistant Professor	JDCOEM, Nagpur
3	Prof. Gauarv Rangari	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE02E	Geotechnical Design	3	0	0	3

	Prerequisites for the course
1	Basic knowledge of soil mechanics and geotechnical engineering principles.
2	Understanding of soil classification systems and index properties of soils.
3	Knowledge of laboratory and field testing methods for soil properties and behavior.
4	Understanding of different types of foundations and their behavior under loads.
5	Familiarity with soil-structure interaction and its importance in foundation design.

	Prior Reading Material/useful link		
1.	https://onlinecourses.nptel.ac.in/noc21_ce41/preview		
2.	https://www.youtube.com/watch?v=7kizaNBowrw		
3.	https://www.elementaryengineeringlibrary.com/civil-engineering/soil- mechanics/soil-classification-system		

Sr.	Course	Course Outcome Statement	
No.	Outcome		
	number		
1	CO1	Understand concept of stable foundation.	
2	CO2	Describe various geotechnical methods for foundation selection.	
3	CO3	Calculate the bearing values from the field test for foundation design for different field conditions.	
4	CO4	Analyze the settlement of foundation under the application of load.	
5	CO5	Evaluate the design parameters for foundation design for the different field conditions.	
6	CO6	Develop the knowledge of ground improvement and foundation designing.	

Course Content			
	Shallow and deep foundations, Requirements of stable foundation		
Unit I	design, foundation location and depth of foundation. Minimum depth of		
	foundation, Criteria for Selection of type of foundation		
	Shallow foundation design from trial pit and bore hole data, relevance of plate		
Unit II	load test with foundation design, Bearing capacity evolution from various		
	methods effect of compressibility on foundation design		
Unit III	Settlement of Pile foundation, load transfer mechanism ,critical		
Unit III	depth of pile foundation, negative skin friction.		
Unit IV	Pile bearing capacity from cone penetration test, Design of pile		
	foundation on cohesive and cohesion less oil, Pile efficiency.		
Unit V	Geo-textiles, reinforce earth, Compaction for deeper layers, Preloading		
	,stone columns ,grouting, injecting methods, electrical and thermal stabilization.		

Text Books:			
1	Kasamalkar, B.J., "Foundation Engineering", Pittsburgh vintage Grand Prix.		
	Murthy V.N.S., "Soil Mechanics and Foundation Engineering", CRC Press		
2	2002.		
2	Arora K.R., "Soil Mechanics and Foundation Engineering", Standard		
3	publication 2009.		
	Punmia B. C., "Soil Mechanics and Foundation Engineering", Laxmi		
4	publication.		
Reference B	Reference Book:		
1	Nayak N.V., "Foundation Design Manual", DhanpatRai and Sons.		
2	Brahma S.P., "Foundation Engineering", Tata McGraw-Hill 5th Edition.		
2	Bowles J.E., "Foundation analysis & Design" McGraw-Hill Higher Education		
5	5th edition.		

Sr. No.	Name of Person	Designation	Organization
1	Dr. P. Y. Pawade	Professor	GHRCOE, Nagpur
2	Prof. Atul Gautam	Assistant Professor	JDCOEM, Nagpur
3	Prof. Nilesh Pal	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6TE02F	Railway Engineering	3	0	0	3

	Prerequisites for the course
1	Basic knowledge of civil engineering and construction principles.
2	Understanding of mechanics of materials and structural analysis.
3	Knowledge of surveying and alignment principles.
4	Understanding of geotechnical engineering and soil mechanics.
5	Basic knowledge of transportation engineering and traffic flow principles.

	Prior Reading Material/useful link		
1.	https://www.youtube.com/watch?v=LCyZFTEyNoo		
2.	https://eng.libretexts.org/Bookshelves/Civil_Engineering/Fundamentals_of_Transportation/05%3A_Traffic/5.02%3A_Traffic_Flow		
3.	https://www.youtube.com/watch?v=G7qU7HOw9QA		

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Define the various component of railway track.
2	CO2	Explain the terminology used in planning of rails and tunnels.
3	CO3	Analyze the cause the reactions between the track and locomotives.
4	CO4	Classify the types of the various technical terms used in railway
4	004	stations.
5	CO5	Decide the construction and maintenance steps of railway.
6	CO6	Build the various geometric features of railway track.

Course Con	tent
Unit I	Railway and its Development: Long Term Operative Plans for Indian Railways. Classification of Railway Lines, General Features of Indian Railways. Railway Track: Alignment, Requirement, Gauges, Track Section, Coning of Wheels, Stresses in railway Track, High Speed Track.
Unit II	Rails: Types and Functions, Selection of Rails, Test on rails wear and defects, Corrugations and Creep of Rails. Rail joints, short and long welded panels. Sleepers: Functions and Requirements of Sleepers, Density and Spacing of Sleepers, Types of Sleepers, Merits and Demerits. Ballast: Functions, Types, Sizes and Requirements of Good Ballast. Rail Fixtures and Fastening.
Unit III	 Geometric Design of Railway Track: Gradients, Speed, Super Elevation, Cant Deficiency, Negative Super Elevation, Curves, Length of Transition Curves, Grade Compensations. Points & Crossings: Left and Right Hand Turn Out, Design Calculations for Turnout & Crossover, Railway Track Functions. Station and Yards: Types, Functions Facilities & Equipment.
Unit IV	 Rail Joints and Welding of Rails: Requirements of an Ideal Rail Joint, Types of Rail Joints. Locomotives and Other Rolling Stock: Types of Traction, Classification of Locomotives, Traction and Tractive Resistance, Hauling Capacity and TractiveEffort of Locomotives. Railway Signaling and Interlocking: Objectives, Classification, Signalling Systems, Interlocking, Modern Signalling Installations, Control and Movementof Trains.
Unit V	Railway track construction & Maintenance: Railway Track Construction, Inspection and Modern Techniques of Maintenance, Push through Technique, Suburban Railway in Metro cities. Railway Tunneling: Necessity, Alignment, Gradient, Size and Shapes, Methods of Tunnelling, Shaft of Tunnels, Maintenance and Safety.

Text Books:	
1	Saxena; Railway Engineering.
2	Oza H.P., Oza G.H. Dock and harbour Engineering, Charotar.
3	William W. Hay, Railroad Engineering, 2nd Edition, John Willey and Sons.
4	Srivastav R., Docks harbour and tunnels engineering, Charoter.

Sr. No.	Name of Person	Designation	Organization		
1	Dr. P. Y. Pawade	Professor	GHRCOE, Nagpur		
2	Prof. Shital Navghare	Assistant Professor	JDCOEM, Nagpur		
3	Prof. Nilesh Pal	Assistant Professor	JDCOEM, Nagpur		

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6O002A	Building Construction Materials	4	0	0	4

	Prerequisites for the course
1	Knowledge of the properties and characteristics of different types of building materials.
2	Knowledge of construction processes and techniques.
3	Understanding of the properties and applications of concrete.
4	Understanding of the manufacturing processes and properties of different types of steel.
5	Knowledge of the properties and characteristics of different types of building materials.

	Prior Reading Material/useful link
1.	https://structuralengineeringbasics.com/what-types-of-construction-building-
2.	https://www.masterclass.com/articles/building-materials-guide
3.	https://www.youtube.com/watch?v=PU4_J5n6Y28

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Identify the various construction materials.
2	CO2	Classify various properties of the basic construction materials such as brick, stone timber, metals
3	CO3	Choose the various civil engineering materials by performing different lab tests on materials.
4	CO4	Categorize the concretes used in construction industry for specific applications.
5	CO5	Estimate various properties of concrete and construction techniques for earthwork, tunneling andformwork.
6	CO6	Adopt advanced construction materials for thermal and sound insulation, smart materials and plasticand timber products.

Course Con	tent	
Unit I	Cement: Manufacture, basic properties of cement compounds, grades, packingstorage, quality control and curing. Aggregates: Classification, characteristics, soundness of aggregates, finenessmodulus Lime & Mortar: Classifications & Properties	
Unit II	Concrete: Introduction, properties of concrete, water cement ratio, workability, compressive strength, grades, Production of Concrete: Batching, mixing, transportation, placing, compaction and curing of concrete, quality control ofconcrete, concrete mix design. Introduction to HPC, SCC and FRC Admixtures and Superplasticizers: Functions, classification, acceleratingadmixture, water reducing admixture, retarding admixture, air-containing admixture.	
Unit III	 Bricks: Composition of good brick earth, harmful ingredients, manufacture of bricks, characteristics of good bricks, shapes, classification of bricks asper IS 1077-1985 and testing. Unit III Stones: Classification of rocks, test for stones, characteristics of a good building stone, deterioration of stones, common building stones of India Timber: Classification and identification of timber, defects in timber, characteristics of good timber seasoning of timber 	
Unit IV Steels: Manufacture of steel, market forms of steel e.g. mild steel a HYSDsteel bars, rolled steel sections. Thermo Mechanically Treated (TM Bars. Miscellaneous Materials: Asphalt, Bitumen, insulating material materials fordoors and windows, paints. Laboratory Work: Tests on: Cement, fine aggregates, coarse aggregate fresh and hardened concretes tests on bricks Tests on Steel		
Unit VAdvanced Construction Materials: Plastics, Timber products and Preservation, materials for thermal insulation materials for sound insulation. Smart Materials and their applications. Special Concretes: Light Weight Concrete, Vaccuum Concrete, Waste Mater Based Concrete,Fiber reinforced concrete, Polymer Concrete Composit Ferrocement, Concreting at High andLow Temperatures, Self- Compacti Concrete (SCC), Ready Mixed Concrete (RMC) and itscharacteristics and advantages, Shotcrete and concreting in tunnels.		

Text Books:	
1	Saxena; Railway Engineering.
2	Oza H.P., Oza G.H. Dock and harbour Engineering, Charotar.
3	William W. Hay, Railroad Engineering, 2nd Edition, John Willey and Sons.
4	Srivastav R., Docks harbour and tunnels engineering, Charoter.

Sr. No.	Name of Person	Designation	Organization		
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur		
2	Prof. Tejaswini Jungahre	Assistant Professor	JDCOEM, Nagpur		
3	Prof. Tina Khandale	Assistant Professor	JDCOEM, Nagpur		

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6O002B	Remote Sensing and GIS	4	0	0	4

	Prerequisites for the course
1	Basic knowledge of electromagnetic radiation and its properties, including the
	concept of wavelength and frequency.
2	Understanding of the principles and applications of optical and digital imaging
	systems.
3	Familiarity with the fundamentals of remote sensing and the various types of remote
	sensing platforms.
4	Knowledge of the characteristics and properties of various types of remote sensing
	data, including analog and digital data.
5	Understanding of image interpretation techniques and the ability to interpret and
	analyze remote sensing imagery.

	Prior Reading Material/useful link				
1.	https://byjus.com/jee/electromagnetic-spectrum-and-electromagnetic-waves/				
2.	https://www.ncbi.nlm.nih.gov/pmc/articles/mid/NIHMS363450/				
3.	https://www.researchgate.net/publication/51041882_Optical_and_Digital_Microsco				
	pic_imaging_recnniques_and_Applications_in_Pathology				

Sr.	Course	Course Outcome Statement
No.	Outcome	
	number	
1	CO1	Label the technical terms based on remote sensing and GIS.
2	CO2	Explain the fundamental of principles of aerial photography and remote sensing.
3	CO3	Apply knowledge of remote sensing and GIS in various fields of civil engineering
4	CO4	Compare spatial and non-spatial data, projection system, topology, geo referencing while usingremote sensing data.
5	CO5	Evaluate the logical information and choose digital image processing for supervised/un-supervisedclassification of given data
6	CO6	Develop skills and knowledge regarding basic principles of Remote Sensing and GIS.

Course Co	ntent					
	Definition and scope of remote sensing: electromagnetic energy and its wavelengths.					
Unit I	Remote sensing systems, sensors and scanners, resolution of sensors, multi-spectral,					
Unit I	thermal and radar scanners, radiometers spectral					
	response curve and spectral signatures. [06 hrs]					
	Elements of sensing system: Terrestrial, airborne and space borne platforms, Sun-					
	synchronous and geo-stationary satellites, advantages and disadvantages. Various earth					
Unit II	Resources satellites, Indian remote sensing program. Remote sensing data products and					
	their types: analogues and digital data formats, Thermal and radar imageries. [08 hrs]					
	Interpretation techniques: Elements of interpretation and methods, interpretation key,					
	interpretation instruments. Relief displacement, image parallax and vertical exaggeration,					
	Determination and calculation of elevation from RS data.					
Unit III	Digital image processing: image rectification and restoration, image enhancement-					
Unit m	contrast manipulations, spatial feature manipulation, multi- image manipulation, image					
	classification supervised and unsupervised classification, accuracy assessments and data					
	merging. [10 hrs]					
	Geographical Information System: Raster and vector data, concepts and basic					
	characteristics of vectorization, topology generation, attribute data attachment, editing					
Unit IV	and analysis. Global Positioning System: Introduction to Global Positioning System					
	(GPS) - Fundamental concepts, GPS system elements and signals, Classification of					
	GPS receivers. [10 hrs]					
	Applications: Integrated approach of RS and GIS application: Application in Geological					
	Investigations, water resources management, environmental studies, EIA based studies.					
Unit V	Land use planning, soil studies and transportation planning. Application in civil					
	engineering projects damns and bridges, site investigations, landslide studies. [08 hrs]					

Text Bo	poks:
1	BasudebBhatta: Remote Sensing And Gis Oxford University Press
2	Dr. B. C. Panda, Remote Sensing Principles And Applications Viva Books
2	Pvt. Ltd.
3	Remote sensing Geology: Ravi P Gupta, Springer publication
4	Remote sensing and GIS: Anji Reddy ISBN publication.
Referen	ce Books:
1	Jensen ,Remote Sensing Of The Environment: An Earth Resource Perspective, Jensen ,2ndEdition,Pearson, India
	Emilio Chuvieco ,Fundamentals of Satellite Remote sensing: An Environmental Approach, ,
2	2ndEdition,CRC Press/Taylor & Francis, Boca Raton, Florida, USA. 2016

Sr. No.	Name of Person	Designation	Organization		
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur		
2	Prof. Tina Khandale	Assistant Professor	JDCOEM, Nagpur		
3	Prof. Gaurav Rangari	Assistant Professor	JDCOEM, Nagpur		

(Laboratory)

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6L001	Design of Steel Structures Lab	0	0	2	1

Sr.	Learning	Learning Outcome Statement
No.	Outcome	
	number	
1	LO1	Analyze the behavior and general design of Structural steel components along with codal provisions
2	LO2	Explain the philosophies of steel structures.
3	LO3	Design the structural detailing of elements.

Sr. No.	Name of Experiments
1	Design of Tension Member.
2	Design of Compression Member.
3	Design of Welded Connection.
4	Design of Bolted Connection.
5	Design of Built up Beam (symmetrical or unsymmetrical section).
6	Design single rolled steel column subjected to axial load and uniaxial moment.
7	Design of axially loaded built up column (Laced or Battened).
8	Design of Column base subjected to axial load and uniaxial moment.
9	Design of Plate Girder.

Semester Co	ourse Code	Name of Course	L	Т	P	Credits
VI C	CE6L002	Environmental Engineering	0	0	2	1

Sr. No	Learning Outcome	Learning Outcome Statement
110.	number	
		Examine the common environmental experiments relating to
1	LO1	water and wastewater quality, and know which tests are appropriate for given environmental problems.
2	LO2	Statistically analyze and interpret laboratorial results.
3	LO3	Adopt the laboratorial results to problem identification, quantification, and basic environmental design and technical solutions.

Sr. No.	Name of Experiments
1	Determination of pH.
2	Determination of Conductivity.
3	Determination Chlorides.
4	Determination of Total Solids.
5	Determination of Turbidity.
6	Determination Suspended Solids.
7	Determination Hardness.
8	Determination of Residual Chlorine (Titrating Method/Coloroscope Method).
9	Jar Test.
10	Study practical of MPN and Plate Count Tests.
11	Study practical of BOD test.

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6L003	Campus Recruitment Training	0	0	2	1

About CRT Training Campus Recruitment training (CRT) at is designed to aid candidates in their preparation for Recruitment through Campuses or outside campuses (i.e. On campus or off campus). Students in their final step of graduation looking for placement in reputed organizations can make use of this training to get trained to deliver their best in the selection processes of organizations.

Course Objectives:

- 1. To enhance the problem solving skills, to improve the basic mathematical skills and to help students who are preparing for any type of campus recruitment drive.
- 2. To groom the students to the corporate level
- 3. To ensure that all eligible students are employed by the end of the final year of study.

Course Outcomes:

At the end of the course students will be able to

- 1. Solve the problems easily by using Short-cut method with time management which will be helpful to them to clear the competitive exams for better job opportunity.
- 2. Analyze the Problems logically and approach the problems in a different manner.
- 3. Students will be able to apply mathematical analysis of data to make connections, draw conclusions and solve problems.
- 4. Students will learn a series of techniques through practical activities to develop presenting skills and enhance confidence to expand the potential of the individual.
- 5. Students can produce a resume that describes their education, skills, experiences and measurable achievements with proper grammar, format and brevity.
- 6. Students demonstrate an ability to target the resume to the presenting purpose
- 7. Demonstrate professional behavior(s) including preparedness, professional attire, and respectful presentation during interviews.

Unit	Content	Duration	
PART I: QUANTITATIVE ABILITY			
Ι	Speed Maths Calculation, Number Systems, Ratio & Proportion, Percentage	03	
II	Profit – Loss & Discount, Simple Interest & Compound Interest, Simple Equation and Age"s	03	
III	Averages Mixture & Allegation, Time and work, Time Speed & Distance, Permutation – Combination & Probability.	03	
PART I	I: - REASONING ABILITY		
Ι	Coding Decoding, Blood Relation, Direction sense, Number Series, Analogy	03	
II	Sitting Arrangement, Puzzles.	03	
III	Syllogism, Statement course of action, Statement arguments, Statement Assumptions, Miscellaneous Type of Reasoning	03	
PART III: - EMPLOYABILITY SKILLS			
I	Presentation Skills:What is a presentation? Essential characteristics of Good presentation.Preparation of presentation: Identify the purpose, Analyze the audience,Design andorganize the information, Medium of presentation and Visual		
	Delivering Presentation: rehearsal, body Language, Handling questions, Tips to fightstage fear.		
	Job Interview Skills		
П	Types of interviews, Focus of interview, dress code, importance of body language. Probable interview questions, Telephonic and video interview, Strategies for success at interview.	02	
ш	Resume Building Meaning, Difference among Bio-data, Curriculum vitae and Resume.CV writing tips, The content of Resume, Structure of Resume.	02	

Text Boo	bks:			
1	Prashant Sharma, SOFT SKILLS PERSONALITY DEVELOPMENT FOR LIFE SUCCESS. BPBPublication.			
2	P. D. Chaturvedi & Mukesh Chaturvedi, Business Communication: Concepts,			
	Cases, and Applications2nd Edition. Pearson Education.			
3	Barun Mitra, Personality Development and Soft Skills. Oxford University Press.			
4	Dr.K.Alex, Soft Skills Know yourself and Know the World. S.ChandPublishing, 2014			
5	R.S Agrawal, Quantitative Aptitude.			
6	Arun Sharma, How to Prepare for Quantitative Aptitude.			
7	R. S Agrawal, Verbal and Non Verbal Reasoning.			
8	R.V.Praveen, Quantitative Aptitude and Reasoning, 2nd Revised Edition 2013,			
	Prentice-Hall of IndiaPvt.Ltd.			

9	G. K. Ranganath, C. S. Sampangiram and Y. Rajaram, A text Book of business
	Mathematics, 2008, Himalaya Publishing House
10	Emilio Chuvieco, Fundamentals of Satellite Remote sensing: An Environmental
	Approach, , 2ndEdition, CRC Press/Taylor & Francis, Boca Raton, Florida, USA.
	2016
11	Dale A. Quattrochi, Elizabeth Wentz, Nina Siu-Ngan Lam, and Charles W.
	Emerson, Integrating Scalein Remote Sensing and GIS: Boca Raton: CRC Press,
	2017
12	James B. Campbell, Randolph H. Wynne, Introduction to Remote Sensing, , Guilford
	Press,2011.

Sr. No.	Name of Person	Designation	Organization
1	Dr. Rahul Ralegaonkar	Professor	VNIT, Nagpur
2	Prof. Hemant Baitule	Assistant Professor	JDCOEM, Nagpur

Semester	Course Code	Name of Course	L	Т	Р	Credits
VI	CE6P004	Mini Project & Seminar	0	0	2	1

Term work shall consist of detailed report for chosen topic and final working proposed in next semester. Report shall summarize the literature survey; spell out the scope of work, proposed methodology and expected results. It is desirable to have a topic sponsored by Industry or research organization or community.

BoS, Chairman, Civil Engineering, JDCOEM, Nagpur

Principal Principal) D College of Engineering & Hanagement Khandala, Katol Roan

Nagger-111565